研究生: |
陳柏諺 Po -Yen Chen |
---|---|
論文名稱: |
青鱂魚在高碳酸環境中的排酸調節 Regulation of acid secretion in medaka (Oryzias latipes) subjected to hypercapnia |
指導教授: |
林豊益
Lin, Li-Yih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 高碳酸中毒 、鈉氫交換蛋白 、排氨蛋白 、碳酸酐酶 |
英文關鍵詞: | hypercapnic acidosis, Na+/H+ exchanger (NHE), Rh glycoprotein, Carbonic anhydrase (CA) |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鰓上的離子細胞為魚類酸鹼調節重要的場所,在過去研究中已經發現在青鱂魚離子細胞頂膜上的NHE3以及Rhcg1參與了排酸以及排氨的機制。為了探討魚類面臨高碳酸環境如何進行排酸調節,本研究以青鱂魚為模式動物,利用掃描式離子選擇電極技術(SIET)偵測仔魚皮膚上特定細胞表面的H+、Na+、NH4+等離子濃度梯度,以分析離子細胞(MRC)以及角質化細胞(KC)在排酸調節的功能。結果顯示,短期高碳酸環境處理(2.08% CO2,10分鐘)會造成仔魚體表H+累積(梯度)增加195%,MRC的H+累積增加108%,KC則未顯著差異。在長期高碳酸環境處理後(2.08% CO2,5天),仔魚體表H+累積量增加257%,但是體表NH4+梯度卻下降44%。而在長期高碳酸環境,MRC以及KC細胞表面卻呈現鹼化的現象(H+梯度為負值)。使用鈉氫交換蛋白(NHE)的抑制劑EIPA處理高碳酸組的仔魚後,皮膚的H+梯度顯著的降低(短期高碳酸環境降60.1%,長期高碳酸環境降52.5%)扮演排酸重要角色。為了更進一步探討離子細胞表面鹼化的原因,利用碳酸酐酶(Carbonic anhydrase, CA)的抑制劑乙醯唑胺(Acetazolamide, AZ)處理。結果發現AZ能夠抑制此鹼化現象(下降52.3%),推測細胞表面的鹼化與CO2(HCO3-)形成有關。利用定量PCR分析mRNA的變化,發現鰓上NHE3、CA15以及Rh蛋白的表現量在高碳酸處理後皆顯著提升(NHE3增加107%, Rhcg1增加68%, Rhcg2 136%, Rhbg 41%, CA15 256%)。利用Rhcg1原位雜交反應以及NHE3和NKA的雙重免疫染色,發現仔魚皮膚上離子細胞密度在高碳酸處理後顯著的增加34%。本研究推論青鱂魚在高碳酸環境中,主要利用離子細胞上的NHE3進行排酸,同時利用細胞表面的CA與Rh蛋白將CO2(HCO3-)回收到離子細胞內。
Epithelial Mitochondria-rich cells (MRCs) in fish gills play a critical role in acid-base regulation. In our previous studies, we have found Na+/H+ exchanger (NHE3) and rhesus glycoprotein (Rhcg1) were involved in the acid and base excretion at the apical membrane of MRCs in medaka (Oryzias latipes). To date, little information is known on the acid-base regulation as fish faced the hypercapnia environment. In the present study, a scanning ion-selective electrode technique (SIET) was applied to measure H+, Na+ and NH4+gradient at the specific cell on the skin of medaka larvae. Under acute hypercapnia, the H+ gradient of larval skin and MRCs was increased 195% and 108% respectively. Keratinocytes (KC) were not affected by hypercapnia. After chronic hypercapnia, the H+ gradient of larval skin show 2.57-fold higher than that of control. But the NH4+gradient reduced 44%. Further, the proton excretion of ionocytes and keratinocytes was decreasing which meant the alkalization occurred at the surface of MRCs and KCs. Treatment with 5-ethylisopropyl amiloride (EIPA) and acetazolamide (AZ) was suppressed the proton excretion and sodium absorption which represent carbonic anhydrase (CA) and NHE were involved in the alkalization at the surface of larval skin. RT-PCR results denoted that mRNA levels of nhe3, rhbg, rhcg1, rhcg2, ca15 were up-regulated during chronic hypercapnia. In situ hybridization and immunocytochemistry shown the mRNA of rhcg1 was localized with NHE3 at MRCs of medaka. In addition, the cell density of MRCs was elevated 34% after hypercapnia treatment. Taken together, we suggested that NHE3 was responsible for the acid excretion during hypercapnia. At the same time, CA (CA15) and Rh proteins (Rhcg1) played an important part in the CO2 (HCO3-) resorption at the surface of MRCs in medaka.
Akgun, U. and Khademi, S.(2011) Periplasmic vestibule plays an
important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily. Proc Natl Acad Sci U S A. 108: 3970-3975
Avella, M., and Bornancin, M. (1989). A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Bio. 142, 155-175.
Boron, W.F.(2010) Sharpey-Schafer lecture: gas channels.
Exp Physiol. 95: 1107-1130
Brett, C.L., Donowitz, M. and Rao, R.(2005) Evolutionary origins of
eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol. 288:C223-239
Braun, M. H., Steele S. L., Ekker, M. and Perry, S. F. (2009). Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296, F994–F1005
Chang, W. J., Horng, J. L., Yan, J. J., Hsiao, C. D. and Hwang, P. P.
(2009). The transcription factor, glial cell missing 2, is involved in
differentiation and functional regulation of H+-ATPase-rich cells in
zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol
296:R1192–R1201.
Cameron, J. N.(1976). Branchial ion untake in Arctic grayling: resting value and the effects of acid-base disturbance. Journal of Experimental Biology 64, 711-725
Cameron, J. N. and Iwama, G. K. (1987). Compensation of progressive hypercapnia in channel catfish and blue crabs. Journal of Experimental Biology 133, 183-197
Donini, A. and O'Donnell, M. J. (2005). Analysis of Na+, Cl-, K+, H+, and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208, 603-10.
Eiam-ong, S., Laski, M. E., Kurtzman, N. A. and Sabatini, S. (1994)
Effect of respiratory acidosis and respiratory alkalosis on renal
transport enzymes. Am J Physiol Renal Fluid Electrolyte Physiol
267: F390–F399
Endeward, V., Cartron, J. P., Ripoche, P. and Gros, G.(2006) Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS.
Transfus Clin Biol. 13: 123-127
Engelman, D. M.. (2005) Membranes are more mosaic than fluid.
Nature.438:578-580
Esbaugh, A. J., Heuer, R. and Grosell, M.(2012)
BImpacts of ocean acidification on respiratory gas exchange and acid-base balance in a marineteleost, Opsanus beta. J Comp Physiol B
Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K,
Hirose S. (2007)Visualization in zebrafish larvae of Na+ uptake in
mitochondria-rich cells whose differentiation is dependent on foxi3a.
Am J Physiol Regul Integr Comp Physiol 292: R470-R480
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Furukawa F, Watanabe S, Inokuchi M, Kaneko T. (2011) Responses
of gill mitochondria-rich cells in Mozambique tilapia exposed to
acidic environments(pH 4.0) in combination with different salinities.
Comp Biochem Physiol A Mol Integr Physiol 158: 468–476
Galvez F, Reid SD, Hawkings G, Goss GG. (2001). Isolation and
characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 282: R658–R668
Georgalis, T., Perry, S. F. and Gilmour, K. M.(2005). The role of
branchial carbonic anhydrase in acid–base regulation in rainbow
trout (Oncorhynchus mykiss). J Exp Biol 209: 518-530
Gilmour, K. M., Thomas, K., Esbaugh, A. J. and Perry, S. F.(2009)
Carbonic anhydrase expression and CO2 excretion during early
development in zebrafish Danio rerio. J Exp Biol 212:3837-3845
Goss, G. G., Laurent, P. and Perry S. F. (1992). Gill morphology and
acid-base regulation during hypercapnic acidosis in the brown
bullhead, lctalurus nebulosus. Cell and Tissue Research 268: 539-552.
Goss, G. G., Laurent, P. and Perry S. F. (1993). Gill morphology
during hypercapnic in brown bullhead (lctalurus nebulosus): role of
chloride cells and pavement cells in acid-base regulation. Journal of
Fish Biology.Cell 45, 705-718
Huang, C.H. and Ye, M. (2010) The Rh protein family: gene evolution,
membrane biology, and disease association. Cell Mol Life Sci .67:1203-1218
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M.-H., Romero, M. F. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284, R1199–R1212.
Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P.-P. and Kaneko, T. (2008). Evidence for an apical Na–Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211, 2584-2599.
Horng, J. L., Lin, L. Y., and Hwang, P.P. (2009). Functional regulation
of H_-ATPase-rich cells in zebrafish embryos acclimated to an
acidic environment. Am J Physiol Cell Physiol 296, C682–C692.
Hung, C. Y., Tsui, K. N., Wilson, J. M., Nawata, C. M., Wood, C. M. and Wright, P. A. (2007). Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210, 2419-29
Hwang PP. (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212: 1745-1752
Hwang, P. P., Lee, T. H. and Lin, L.Y. (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 212: 1745-1752
Inokuchi M, Hiroi J, Watanabe S, Hwang PP, Kaneko T.
(2009)Morphological and functional classification of ion-absorbing
mitochondria-rich cells in the gills of Mozambique tilapia. J Exp Biol
212: 1003-1010
Inoue, K. and Takei, Y. (2002). Diverse adaptability in Oryzias species to high environmental salinity. Zoological Science 19, 727-734.
Ivanis G, Esbaugh AJ, Perry SF. (2008). Branchial expression and
localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers
and their possible role in acid-base regulation in freshwater rainbow
trout (Oncorhynchus mykiss). J Exp Biol 211: 2467–2477
Khademi, S., O'Connell, J., Remis, J., Robles-Colmenares, Y., Miercke, L. J. and Stroud, R. M. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587-94.
Kustu, S. and Inwood, W.(2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol. 13: 103-110
Lin,C.C., Lin, L.Y., Hsu, H. H., Thermes. V., Prunet, P., Horng, J.L. and Hwang, P.P. (2011) Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Cell Physiol 302, R283–R291,
Lin, H., Pfeiffer, D. C., Vogl, A. W., Pan, J. and Randall, D, J. (1994). Immunolocalization of H+-ATPase in the gill epithelia of rainbow trout. J Exp Biol 195,169-183.
Lin H, Randall DJ. (1993). Proton-ATPase activity in crude
homogenates of fish gill tissue: inhibitor sensitivity and
environmental and hormonal regulation. J Exp Biol
180:163–174.
Lin, H., Pfeiffer, D. C., Vogl, A. W., Pan, J. and Randall, D. J. (1994).
Immunolocalization of H+-ATPase in the gill epithelia of rainbow
trout. J. Exp. Biol. 195, 169-183.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371–C378.
Lin, T. Y., Liao, B. K., Horng, J. L., Yan,J. J., Hsiao, C. D. and
Hwang, P. P. (2008). Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294, C1250–C1260.
Marshall, W. S. and Grosell, M. (2005). Ion transport, osmoregulation, and acid-base balance. The Physiology of Fishes, 177-230.
McLamore, E. S., Porterfield, D. M. and Banks, M. K. (2009). Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnology and Bioengineering 102, 791-799.
Musa-Aziz, R., Boron, W. F and Parker, M. D. (2010) Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes.Methods. 51: 134-145
Musa-Aziz, R., Chen, L.M., Pelletier, M.F. and Boron, W.F., (2009a). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. U S A. 106(13), 5406-5411.
Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2007a). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293, R1743-53.
Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007b). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74.
Nawata, C. M., Hung, C. C., Tsui, T. K., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31, 463-74.
Nawata, C. M., Hirose, S., Nakada, T., Wood, C. M. and Kato, A. (2010). Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. J. Exp. Biol. 213, 3150-3160.
Nawata, C. M. and Wood, C. M.(2008) The effects of CO2 and external buffering on ammonia excretion and Rhesus glycoprotein mRNA expression in rainbow trout. J Exp Biol.211: 3226-3236
Perry, S. F., Furimsky, M., Bayaa, M., Georgalis, T., Shahsavarani, A., Nickerson, J. G. and Moon, T. W.(2003) Integrated responses of Na+/HCO3- cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis. Biochim Biophys Acta. 1618(2):175-84
Perry, S. F, Braun, M. H., Noland, M., Dawdy, J. and Walsh, P. J.(2010) Do zebrafish Rh proteins act as dual ammonia-CO2 channels? J Exp Zool 313A: 618-621
Perry, S. F., Malone, S. and Ewing, D. (1987a). Hypercapnic acidosis in the rainbow trout (Salmo gairdneri). I. Branchial ion fluxes and blood acid-base status. Canadian Journal of Zoology 65, 888-895
Perry, S. F., Malone, S. and Ewing, D. (1987b). Hypercapnic acidosis in the rainbow trout (Salmo gairdneri). II. Renal ionic fiuxes. Canadian Journal of Zoology 65, 896-902
Perry, S. F. and Gilmour, K. M. (2006). Acid–base balance and CO2 excretion in fish: Unanswered questions and emerging models. Respiratory Physiology & Neurobiology 154, 199-215.
Purkerson, J. M. and Schwartz, G. J. (2007) The role of carbonic
anhydrases in renal physiology. Kidney Int 71: 103–115, 2007.
Ruiz, O. S., Arruda, J. A. and Talor, Z. (1989) Na-HCO3 cotransport
and Na-H antiporter in chronic respiratory acidosis and alkalosis. Am
J Physiol Renal Fluid Electrolyte Physiol 256: F414–F420
Shih, T. H., Horng, J. L., Hwang, P.-P. and Lin, L.-Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-C1632.
Smith, P. J. S., Hammar, K., Porterfield, D. M., Sanger, R. H. and Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy Research and Technique 46, 398-417.
Soupene E, Inwood W, Kustu S. (2004). Lack of the Rhesus protein
Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at
high CO2. Proc Natl Acad Sci USA 101:7787–7792.
Weiner, I.D.and Verlander, J.W (2010). Molecular physiology of the
Rh ammonia transport proteins. Curr Opin Nephrol Hypertens 19: 471-477
Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293, 284-301.
Wilson, R., Wright, P., Munger, S. and Wood, C. (1994). Ammonia excretion in freshwater rainbow trout (oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4+ exchange. J Exp Biol 191, 37-58.
Wright, P. A., Randall, D. J. and Perry, S. F. (1989).Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol B 158:20 627-635, 1
Wood, C. M., Milligan, C. L. and Walsh, P. J. (1999) Renal responses
of trout to chronic respiratory and metabolic acidoses and metabolic
alkalosis. Am J Physiol 277:R482-R492
Wu, S. C, Horng, J. L., Liu, S. T., Hwang, P. P., Wen, Z. H., Lin, C. S. and Lin, L. Y.(2009) Ammonium-dependent sodium uptake in
mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J
Physiol Cell Physiol 298: C237-C250
Yan, J. J., Chou, M. Y., Kaneko, T. and Hwang, P. P. (2007). Gene
expression ofNa+/H+ exchanger in zebrafish H+ -ATPase-rich cells during acclimation to low-Na+and acidic environments. Am. J. Physiol. Cell Physiol. 293, C1814-C1823.