研究生: |
林旻蓁 Lin, Min-Chen |
---|---|
論文名稱: |
球背象鼻蟲的警戒色具有破壞性偽裝功能 Warning colors of Pachyrhynchus weevils function as disruptive camouflage |
指導教授: |
林仲平
Lin, Chung-Ping |
口試委員: |
林仲平
Lin, Chung-Ping 焦傳金 Chiao, Chuan-Chin 卓逸民 Tso, I-Min 曾惠芸 Tseng, Hui-Yun |
口試日期: | 2024/01/26 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 捕食 、防禦策略 、破壞性偽裝 、背景複雜度 、GabRat 、眼動儀 |
英文關鍵詞: | Predation, Defensive strategy, Disruptive camouflage, Background complexity, GabRat, Eye tracker |
研究方法: | 實驗設計法 、 眼動追蹤技術 |
DOI URL: | http://doi.org/10.6345/NTNU202400310 |
論文種類: | 學術論文 |
相關次數: | 點閱:92 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Allen, W. L., Cuthill, I. C., Scott-Samuel, N. E., & Baddeley, R. (2011). Why the leopard got its spots: relating pattern development to ecology in felids. Proceedings of the Royal Society B: Biological Sciences, 278(1710), 1373-1380.
Bakker, T. C., & Mundwiler, B. (1994). Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behavioral Ecology, 5(1), 74-80.
Barnett, J. B., Cuthill, I. C., & Scott-Samuel, N. E. (2018). Distance-dependent aposematism and camouflage in the cinnabar moth caterpillar (Tyria jacobaeae, Erebidae). Royal Society Open Science, 5(2), 171396.
Biswas, P., Sezgin, T. M., & Robinson, P. (2008). Perception model for people with visual impairments. Visual Information Systems. Web-Based Visual Information Search and Management: 10th International Conference, VISUAL 2008, Salerno, Italy, September 11-12, 2008. Proceedings 10,
Bohlin, T., Gamberale-Stille, G., Merilaita, S., Exnerova, A., ŠTYS, P., & Tullberg, B. S. (2012). The detectability of the colour pattern in the aposematic firebug, Pyrrhocoris apterus: an image-based experiment with human ‘predators’. Biological Journal of the Linnean Society, 105(4), 806-816.
CHEN, Y. T., TSENG, H. Y., JENG, M. L., SU, Y. C., HUANG, W. S., & LIN, C. P. (2017). Integrated species delimitation and conservation implications of an endangered weevil Pachyrhynchus sonani (Coleoptera: Curculionidae) in Green and Orchid Islands of Taiwan. Systematic Entomology, 42(4), 796-813.
Cuthill, I. (2019). Camouflage. Journal of Zoology, 308(2), 75-92.
Cuthill, I. C., Allen, W. L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M. E., Hill, G. E., Jablonski, N. G., Jiggins, C. D., & Kelber, A. (2017). The biology of color. Science, 357(6350), eaan0221.
Cuthill, I. C., Stevens, M., Sheppard, J., Maddocks, T., Párraga, C. A., & Troscianko, T. S. (2005). Disruptive coloration and background pattern matching. Nature, 434(7029), 72-74.
Cuthill, I. C., Stevens, M., Windsor, A. M., & Walker, H. J. (2006). The effects of pattern symmetry on detection of disruptive and background-matching coloration. Behavioral Ecology, 17(5), 828-832.
de Alcantara Viana, J. V., Campos Duarte, R., Vieira, C., Augusto Poleto Antiqueira, P., Bach, A., de Mello, G., Silva, L., Rabelo Oliveira Leal, C., & Quevedo Romero, G. (2023). Crypsis by background matching and disruptive coloration as drivers of substrate occupation in sympatric Amazonian bark praying mantises. Scientific reports, 13(1), 19985.
Exnerová, A., Svádová, K., Štys, P., Barcalová, S., Landová, E., Prokopova, M., Fuchs, R., & Socha, R. (2006). Importance of colour in the reaction of passerine predators to aposematic prey: experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biological Journal of the Linnean Society, 88(1), 143-153.
Hall, J. R., Matthews, O., Volonakis, T. N., Liggins, E., Lymer, K. P., Baddeley, R., Cuthill, I. C., & Scott-Samuel, N. E. (2021). A platform for initial testing of multiple camouflage patterns. Defence Technology, 17(6), 1833-1839.
Honma, A., Mappes, J., & Valkonen, J. K. (2015). Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecology and Evolution, 5(21), 4863-4874.
Josef, N., Amodio, P., Fiorito, G., & Shashar, N. (2012). Camouflaging in a complex environment—octopuses use specific features of their surroundings for background matching. PLoS One, 7(5), e37579.
Laakso, L. K., Ilvonen, J. J., & Suhonen, J. (2021). Phenotypic variation in male Calopteryx splendens damselflies: the role of wing pigmentation and body size in thermoregulation. Biological Journal of the Linnean Society, 134(3), 685-696.
Lee, C. Y., Yo, S. P., Clark, R., Hsu, J. Y., Liao, C. P., Tseng, H. Y., & Huang, W. S. (2018). The role of different visual characters of weevils signalling aposematism to sympatric lizard predators. Journal of Zoology, 306(1), 36-47.
Leone, M., Loss, A., Rocha, R. G., Paes, R., & Costa, L. (2019). To stripe or not to stripe? Natural selection and disruptive coloration in two sympatric species of Neotropical marsupials from the genus Monodelphis (Mammalia, Didelphidae). Boletim da Sociedade Brasileira de Mastozoologia, 85, 86-94.
Merilaita, S., & Lind, J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proceedings of the Royal Society B: Biological Sciences, 272(1563), 665-670.
Price, N., Green, S., Troscianko, J., Tregenza, T., & Stevens, M. (2019). Background matching and disruptive coloration as habitat-specific strategies for camouflage. Scientific reports, 9(1), 7840.
Ramírez‐Delgado, V. H., & Cueva del Castillo, R. (2020). Background matching, disruptive coloration, and differential use of microhabitats in two neotropical grasshoppers with sexual dichromatism. Ecology and Evolution, 10(3), 1401-1412.
Rosenholtz, R., Li, Y., Mansfield, J., & Jin, Z. (2005). Feature congestion: a measure of display clutter. Proceedings of the SIGCHI conference on Human factors in computing systems,
Ruxton, G. D., Allen, W. L., Sherratt, T. N., & Speed, M. P. (2019). Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford university press.
Saporito, R. A., Zuercher, R., Roberts, M., Gerow, K. G., & Donnelly, M. A. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia, 2007(4), 1006-1011.
Schaefer, H. M., & Stobbe, N. (2006). Disruptive coloration provides camouflage independent of background matching. Proceedings of the Royal Society B: Biological Sciences, 273(1600), 2427-2432.
Schultze, W. (1923). A monograph of the pachyrrhynchid group of the Brachyderinae, Curculionidae: Part 1. The genus Pachyrrhynchus Germar. Philippine Journal of Science, 23, 609-673.
Seymoure, B. M., & Aiello, A. (2015). Keeping the band together: evidence for false boundary disruptive coloration in a butterfly. Journal of evolutionary biology, 28(9), 1618-1624.
Smith, J. M., & Harper, D. (2003). Animal signals. Oxford University Press.
Stevens, M., Cuthill, I. C., Windsor, A. M., & Walker, H. J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society B: Biological Sciences, 273(1600), 2433-2438.
Stevens, M., & Merilaita, S. (2009). Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1516), 481-488.
Stevens, M., Winney, I. S., Cantor, A., & Graham, J. (2009). Outline and surface disruption in animal camouflage. Proceedings of the Royal Society B: Biological Sciences, 276(1657), 781-786.
Tanahashi, M., & Fukatsu, T. (2018). Natsumushi: Image measuring software for entomological studies. Entomological Science, 21(3), 347-360.
Team, R. C. (2023). A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing. https://www.R-project.org/
Troscianko, J., Skelhorn, J., & Stevens, M. (2017). Quantifying camouflage: how to predict detectability from appearance. BMC evolutionary biology, 17(1), 1-13.
Tseng, H.-Y., Lin, C.-P., Hsu, J.-Y., Pike, D. A., & Huang, W.-S. (2014). The functional significance of aposematic signals: geographic variation in the responses of widespread lizard predators to colourful invertebrate prey. PLoS One, 9(3), e91777.
Tseng, H. Y., Huang, W. S., Jeng, M. L., Villanueva, R. J. T., Nuneza, O. M., & Lin, C. P. (2018). Complex inter‐island colonization and peripatric founder speciation promote diversification of flightless Pachyrhynchus weevils in the Taiwan–Luzon volcanic belt. Journal of Biogeography, 45(1), 89-100.
Tullberg, B. S., Merilaita, S., & Wiklund, C. (2005). Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society B: Biological Sciences, 272(1570), 1315-1321.
Vilela, D. S., Tosta, T. A., Rodrigues, R. R., Del-Claro, K., & Guillermo-Ferreira, R. (2017). Colours of war: visual signals may influence the outcome of territorial contests in the tiger damselfly, Tigriagrion aurantinigrum. Biological Journal of the Linnean Society, 121(4), 786-795.
Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C., & Lin, C.-P. (2018a). Too hard to swallow: a secret secondary defence of an aposematic insect. Journal of Experimental Biology, 221(2), jeb172486.
Wang, L.-Y., Rajabi, H., Ghoroubi, N., Lin, C.-P., & Gorb, S. N. (2018b). Biomechanical strategies underlying the robust body armour of an aposematic weevil. Frontiers in physiology, 9, 1410.
Webster, R. J., Hassall, C., Herdman, C. M., Godin, J.-G. J., & Sherratt, T. N. (2013). Disruptive camouflage impairs object recognition. Biology Letters, 9(6), 20130501.
Xiao, F., & Cuthill, I. C. (2016). Background complexity and the detectability of camouflaged targets by birds and humans. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20161527.
Yeh, H.-Y., Tseng, H.-Y., Lin, C.-P., Liao, C.-P., Hsu, J.-Y., & Huang, W.-S. (2018). Rafting on floating fruit is effective for oceanic dispersal of flightless weevils. Journal of Experimental Biology, 221(24), jeb190488.
Yorzinski, J. L., Patricelli, G. L., Babcock, J. S., Pearson, J. M., & Platt, M. L. (2013). Through their eyes: selective attention in peahens during courtship. Journal of Experimental Biology, 216(16), 3035-3046.
Yorzinski, J. L., Patricelli, G. L., Bykau, S., & Platt, M. L. (2017). Selective attention in peacocks during assessment of rival males. Journal of Experimental Biology, 220(6), 1146-1153.