簡易檢索 / 詳目顯示

研究生: 呂偉誠
Wei-Cheng Lu
論文名稱: 模糊細菌演化系統與伺服馬達控制之應用
Fuzzy Bacterial Foraging System and its Applications in Control of Servo Motors
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 細菌演算法模糊系統倒階控制直流伺服馬達
英文關鍵詞: Bacterial Foraging Algorithm, fuzzy system, backstepping control, DC servo motor
論文種類: 學術論文
相關次數: 點閱:336下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一改良式細菌演算法,利用改良式細菌演算法調整模糊系統的設計參數並應用於模糊控制系統。由於傳統細菌演算法具複雜操作導致時間複雜度較高,因此改良傳統細菌演算法藉由減低時間複雜度以增加其運算效能,其中改良包括群體反應修正;修正群體相對位置至最佳菌源位置、細菌游動能力調整;細菌游動長度彈性化、細菌同心圓移動模式;幫助細菌跳脫區域最佳解並提升搜尋效能、細菌定位;最佳個體細菌位置保留與菌種調整率;最佳細菌源演化,在此五方面改良傳統細菌規則並估計成本函數調整模糊系統參數達到快速收斂效果。為了即時控制接著設計倒階控制搭配所提之改良式細菌模糊系統,藉由李亞普諾夫函數分析系統穩定性,其中以改良式細菌演算法的成本函數作為閉迴路系統之評估穩定性機制。改良式細菌模糊演化系統包括模糊理論與改良式細菌演算法之結合,故增加控制的穩定及減少演算法運算時間成本,以達到在更好控制效能下並兼具更低的時間複雜度順利實現於實際應用上,最後即時與非即時模擬實驗與實際實驗結果皆展現良好追蹤成效與演算法效能。

    This thesis proposes a modified bacterial foraging algorithm to adjust the design of fuzzy systems. Since traditional bacterial foraging algorithms require complicated operations and extremely time-consuming, the modified bacterial foraging algorithm utilize some simplified procedures to reduce the computation time and increase the operation efficiency. The simplified procedures include five parts that include: 1) modified Swarm Behavior, 2) electrification bacterium hover ability, 3) modified bacterium location, 4) adjustment of bacteria source, and 5) the best bacterium source evolution mechanism.
    The modified bacterial foraging algorithm is applied to update the parameters of fuzzy systems that approximate nonlinear functions, and to on-line tune the parameters of fuzzy controllers. The DC servo motor experiment and simulation results demonstrate the feasibility and applicability of the proposed methods.

    摘要 1 ABSTRACT ii 目  錄 iv 圖 目 錄 vii 表 目 錄 xi 第一章 緒 論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 內容大綱 4 第二章 傳統細菌演算法與模糊系統 5 2.1 細菌演算法理論背景與基礎 6 2.1.1 大腸埃希氏菌 6 2.1.2 細菌之活動 7 2.1.3 細菌之物理行為 7 2.1.4 細菌最佳化群體覓食 8 2.2 細菌演算法之行為分析 9 2.2.1 趨藥性 (Chemotaxis) 10 2.2.2 群聚效應 (Swarming) 11 2.2.3 繁殖 (Reproduction) 12 2.2.4 消除與分散 (Elimination, and Dispersal) 13 2.2.5 傳統細菌演算法 13 2.3 模糊系統 16 2.3.1 傳統模糊系統 16 第三章 改良式細菌演算法 17 3.1 細菌演算法之改良 17 3.1.1 群體反應修正 17 3.1.2 細菌游動能力 19 3.1.3 同心圓移動模式 (Concentric circles) 20 3.1.4 細菌定位模式 21 3.1.5 菌種調整率 22 3.2 改良式細菌演算法模糊系統 23 3.3 改良式細菌演算法之函數近似模擬 25 3.3.1範例一 函數近似器 25 3.3.2範例二 函數近似器 28 3.3.3範例三 函數近似器 32 第四章 改良式細菌模糊系統應用於非線性控制系統 37 4.1 問題描述 37 4.2 倒階控制器設計 38 4.3 細菌模糊系統倒階控制器設計 41 4.4 監督控制器設計 42 4.5 改良式細菌模糊Affine系統模擬範例 43 第五章 改良式細菌模糊系統於直流轉換器之實作應用 53 5.1 直流轉換器與硬體電路介紹[52,53,59] 53 5.1.1 降壓式直流電壓轉換器 54 5.1.2硬體電路介紹 58 5.1.3電路操作介紹 61 5.2 改良式細菌模糊系統應用實驗介紹 62 5.3 改良式細菌模糊系統應用實驗之倒階控制設計 65 5.3.1 直流電轉換器與馬達之數學動態系統 66 5.4 改良式細菌模糊倒階控制系統應用實驗 70 5.4.1 無負載實驗 70 5.4.2 馬達負載實驗 73 5.4.3 理想電壓變化實驗 75 5.4.4 輸入電壓變化實驗 78 5.4.5 馬達負載變化實驗 81 5.4.6 定電阻負載實驗 84 5.4.7 定電阻負載之參考電壓變化實驗 85 5.4.8 定電阻負載之輸入電壓變化實驗 87 5.5 實驗結論 88 第六章 研究結論與未來展望 90 6.1 研究結論 90 6.2 未來展望 91 參考文獻 92

    [1] K. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, no. 3, pp. 52–67, 2002.
    [2] D.Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, pp. 65–85, Jun. 1994.
    [3] A. Colorni, M. Dorigo and V. Maniezzo, “Distributed optimization by ant colonies,” in Proceeding of the 1st European Conference on Artificial Life, Paris, pp. 134–142, 1991.
    [4] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceeding of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948, Nov. 1995.
    [5] J.W. Ma, G. L. Zhang and H. Xie, “The Optimization of Feed-Forward neural networks based on atificial fish-swarm algorithm,” Computer Applications, vol. 24, pp. 21–23, Oct. 2004.
    [6] K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, pp. 52–67, Jun. 2002.
    [7] S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation,” IEEE Transaction on Evolutionary Computation, vol. 9, pp. 61–73, Feb. 2005.
    [8] T. K. Das and G. K. Venayagamoorthy, “Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA,” in IEEE Industry Application Society' s 41st Annual Meeting, Tampa, USA, pp. 635–641, Oct. 2006.
    [9] W. J. Tang, Q. H. Wu and J. R. Saunders, “Bacterial Foraging Algorithm For Dynamic Enviroment,” in IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp.4467–4473, Jul. 2006.
    [10] W. J. Tang, M. S. Li, S. He, Q. H. Wu and J. R. Saunders, “Optimal power flow with dynamic loads using bacterial foraging algorithm,” in 2006 International Conference on Power System Technology, Chongqing, China, Oct. 2006.
    [11] L. A. Zadeh, “Fuzzy sets,” IEEE Trans. Information and Control, 8, pp. 338-353, 1965.
    [12] W.Y. Wang, Y.G. Leu, and T.T. Lee, “Output-feedback control of nonlinear systems using direct adaptive fuzzy-neural controller,” Fuzzy Sets and Systems, 140, pp. 341-358, 2003.
    [13] W. Y. Wang, M. L. Chan, T. T. Lee, and C. H. Liu, “Recursive Back-stepping Design of Adaptive Fuzzy Controller for Strict Output Feedback Nonlinear Systems,” Asian Journal of Control, vol. 4, no.3, Sept, 2002.
    [14] W. Y. Wang, M. L. Chan, C. C. Hsu, and T. T. Lee, “Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems via an Adaptive Fuzzy-Neural Approach,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol.32, no.4, pp. 483-492, 2002.
    [15] L. X. Wang, “A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. On Automatic Control, vol. 39, no. 9, pp. 1845-1847, 1994.
    [16] Y.G. Leu, T.T. Lee, and W.Y. Wang, “Observer-based Adaptive Fuzzy-Neural Control for Unknown Nonlinear Dynamical Systems, ”IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 29, no. 5, pp.583-591, Oct., 1999.
    [17] C.H. Wang, H.L. Liu, and T.C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no.1, pp.39-49, 2002.
    [18] Y. Yuan and H. Zhuang, “A Genetic Algorithm for Generating Fuzzy Classification Rules,” IEEE Trans. Fuzzy Sets and Systems, pp. 1-19, vol.84, no.1, November, 1996.
    [19] T. L. Seng, M. B. Khalid, and R. Yusof, “Tuning of a Neuro-Fuzzy Controller by Genetic Algorithm,” IEEE Trans. Syst. Man, Cyber. Part B, pp. 226-236, vol.29, no.2, 1999.
    [20] K. Steer, A. Wirth, and S. Halgamuge, “The rationale behind seeking inspiration from nature,” R. Chiong, Ed. Springer, vol. 193, pp. 51–76, 2009.
    [21] Y. Liu and K. Passino, “Biomimicry of social foraging bacteria for distributed optimization: Models, principles and emergent behaviors,” Journal of Optimization Theory and Applications, vol. 115, no. 3, pp. 603–628, 2002.
    [22] Y. Liu and K. Passino, “Distributed optimization and control using only a germ of intelligence,” Proceedings of the 2000 IEEE International Symposium on, pp. P5–13, 2000.
    [23] H. Bremermann, “Chemotaxis and optimization,” Genetic Algorithm in Search, Optimization and Machine Learning, Journal of the Franklin Institute, vol. 297, no. 5, pp. 397–404, 1974.
    [24] S. M¨uller, J. Marchetto, S. Airaghi, and P. Koumoutsakos, “Optimization based on bacterial chemotaxis,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 16–29, 2002.
    [25] M. Vergassola, E. Villermaux, and B. Shraiman, “’infotaxis’ as a strategy for searching without gradients,” Nature, vol. 445, no. 7126, pp. 406–409, 2007, cited By (since 1996) 31. [Online]. Available: http://www.scopus.com/inward/record.url? eid=2-s2.0-33846553228&partnerID=40
    [26] D. Nicolau, Jr., K. Burrage, D. Nicolau, P. Maini, D. V. N. Jr., K. Burrage, D. V. Nicolau, and P. K. Maini, “‘Extremotaxis’: Computing with a bacterial-inspired algorithm,” BioSystems, vol. 94, pp. 47– 54, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/B6T2K-4ST3YNH-C/2/8378efc668ecd663d73e82b2ed5e6fea
    [27] S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 61–73, Feb. 2005.
    [28] D. Kim and J. Cho, “Adaptive tuning of PID controller for multivariable system using bacterial foraging based optimization,” Lecture Notes in Computer Science. Springer, vol. 3528, pp. 231–235, 2005.
    [29] M. Tripathy, S. Mishra, L. Lai, and Q. Zhang, “Transmission loss reduction based on facts and bacteria foraging algorithm,” Lecture Notes in Computer Science, pp. 222–231, 2006.
    [30] D. Acharya, G. Panda, S. Mishra, and Y. Lakshmi, “Bacteria foraging based independent component analysis,” Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pp. 527–531, 2007.
    [31] W. Alfonso, “Regulaci´on de temperatura en la plataforma UV–PTM01 basada en agentes cooperativos para la asignaci´on din´amica de recursos,” Universidad del Valle, Tech. Rep., 2007.
    [32] M.S. Li, W.J. Tang, W.H. Tang, and Q. J.R. Saunders, “Bacterial foraging algorithm with varying population for optimal power flow,” Lecture Notes in Computer Science, vol. 4448. Springer Berlin / Heidelberg, pp. 267–261, 2007.
    [33] M. Mu˜noz, J. L´opez, and E. Caicedo, “Bacteria swarm foraging optimization for dynamical resource allocation in a multizone temperature experimentation platform,” in 12th International Fuzzy Systems Association Congress (IFSA 2007), 2007.
    [34] S. Mishra and C. Bhende, “Bacterial foraging technique-based optimized active power filter for load compensation,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp. 457–465, Jan. 2007.
    [35] C. Wu, N. Zhang, J. Jiang, J. Yang, and Y. Liang, “Improved bacterial foraging algorithms and their applications to job shop scheduling problems,” Lecture Notes in Computer Science, vol. 4431. Springer, pp. 562–569, 2007.
    [36] T. Datta, I. Misra, B. Mangaraj, and S. Imtiaj, “Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence,” Progress In Electromagnetics Research C, vol. 1, pp. 14–157, 2008.
    [37] V. Gazi and K. Passino, “Stability analysis of swarms in an environment with an attractant/repellent profile,” in American Control Conference, vol. 3, pp. 1819 – 1824 vol.3, 2002.
    [38] Y. Liu, K.M. Passino, “Stability analysis of swarms,” IEEE Transactions on Automatic Control, vol. 48, no. 4, pp. 692–697, 2003.
    [39] V. Gazi, K.M. Passino, “Stability analysis of social foraging swarms,” IEEE Transactions of Systems, Man and Cybernetics - Part B, vol. 34, no. 1, pp. 539–557, 2004.
    [40] V. Gazi, K.M. Passino, “A class of attractions/repulsion functions for stable swarm aggregations,” Int. J. Control, vol. 77, no. 18, pp. 1567–1579, 2004.
    [41] V. Gazi, K.M. Passino, “Stability of a one-dimensional discrete-time asynchronous swarm,” IEEE Transactions on Man, and Cybernetics, Part B: Cybernetics, vol. 35, no. 4, pp. 834–841, Aug. 2005.
    [42] A. Abraham, A. Biswas, S. Dasgupta, and S. Das, “Analysis of reproduction operator in bacterial foraging optimization algorithm,” IEEE World Congress on Computational Intelligence, pp. 1476–1483, 2008.
    [43] A. Biswas, S. Das, S. Dasgupta, and A. Abraham, “Stability analysis of the reproduction operator in bacterial foraging optimization,” Proceedings of the 5th international conference on Soft computing as transdisciplinary science and technology. New York, NY, USA: ACM, pp. 564–571, 2008.
    [44] S. Das, S. Dasgupta, A. Biswas, A. Abraham, and A. Konar, “On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm,” IEEE Transactions on Man and Cybernetics, Part A: Systems and Humans, vol. 39, no. 3, pp. 670–679, May 2009.
    [45] S. Dasgupta, A. Biswas, A. Abraham, and S. Das, “Adaptive computational chemotaxis in bacterial foraging algorithm,” CISIS International Conference Intelligent and Software Intensive Systems, March 2008, pp. 64–71, 2008.
    [46] S. Dasgupta, S. Das, A. Abraham, and A. Biswas, “Adaptive computational chemotaxis in bacterial foraging optimization: An analysis,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 4, pp. 919–941, August 2009.
    [47] H. Berg, “Motile behavior of bacteria,” Phys. Today, pp. 24-29, Jan. 2000.
    [48] Kazumichi Shirai, Yoshio Matsumoto, Satoshi Koizumi, Hiroshi Ishiguro, “1 DOF Swimming Robot Inspired by Bacterial Motion Mechanism,” International Conference on Robotics and Biomimetics Bangkok, Thailand, , pp. 812-817, February 21 - 26, 2009.
    [49] Li-Xin Wang. Adaptive Fuzzy Systems and Control, Prentice Hall, 1994.
    [50] M. Karakose and E Akin, “Type-2 fuzzy activation function for multilayer feedforward neural networks,” Proc. IEEE Int. Conf. Syst. Man Cybern, vol. 4, pp.3762-3767. , Oct. 10-13, 2004
    [51] 王醴,工業電子學,全威圖書有限公司,Oct. 2002。
    [52] 廖東成、王順忠 ,電力電子學,滄海書局,May. 2004。
    [53] 葉瑞鑫,開關式直流對直流電源轉換器應用,全威圖書有限公司,Jan. 1993。
    [54] J. E. Slotine and W. Li. Applied Nonlinear Control, Englewood Cliffs, NJ: Inc., 1991.
    [55] http://imprensamarela.wordpress.com/2009/11/
    [56] http://israel-biologialacelula.blogspot.com/2011/04/apartado-vii-citologia-tipos-de-c.html
    [57] Mario A. Mu˜noz, Saman K. Halgamuge, Wilfredo Alfonso, and Eduardo F. Caicedo, “Simplifying the Bacteria Foraging Optimization Algorithm,” Proc. IEEE Int. Conf. Syst.. , 2010
    [58] 楊皓程,模糊遺傳系統馬達之PWM控制,國立臺灣師範大學應用電子科技研究所,2010。

    下載圖示
    QR CODE