研究生: |
陳思婷 Chen, Szu-Ting |
---|---|
論文名稱: |
以中孔洞沸石負載高密度銀奈米粒子之合成、鑑定及應用 Syntheses, Characterizations and Applications of Silver Nanoparticles Loaded onto Mesoporous Zeolites |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 中孔洞沸石 、奈米銀粒子 、表面拉曼增強效應 |
英文關鍵詞: | mesoporous zeolite nanoparticles, Ag nanoparticles, surface enhanced Raman spectroscopy |
DOI URL: | http://doi.org/10.6345/NTNU201901030 |
論文種類: | 學術論文 |
相關次數: | 點閱:131 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用本實驗室所開發之中孔洞沸石奈米粒子(MZNs)及其薄膜(MZTFs)材料作為載體,以改變其表面電荷成功吸附負電荷之銀前驅物,並調整各項實驗參數,以調控奈米銀粒子之粒徑及負載量,找到奈米銀粒子尺寸限制之最佳化條件,而提升奈米銀粒子於中孔矽材之填充率。在研究鑑定上,我們利用電子顯微鏡、X光能量色散光譜、界達電位分析、紫外-可見光吸收光譜、氣體等溫吸脫附以及X光粉末繞射、掠角X光散射、拉曼散射光譜以分析孔洞結構及奈米銀粒子。並且將此中孔洞奈米銀複合材料(Ag@MZNs)應用於表面拉曼增強效應(surface enhanced Raman spectroscopy,SERS)偵測羅丹名6G(Rhodamine 6G)染料分子,利用拉散光譜成功偵測R6G染料濃度至10-9 M,證實了本研究所合成之中孔洞奈米銀複合材料同時具有限制奈米銀粒子之生長並且能夠有效應用於SERS之偵測以提升拉曼散射訊號。
Mesoporous zeolite nanoparticles (MZNs) and related thin films (MZTFs) materials have been developed to form silver nanoparticle composites. Loadings and size controls of Ag nanoparticles can be experimentally tuned and optimized via surface charges and anionic silver precursors, e.g. silver ethylenediaminetetraacetate (AgEDTAn-3, n = Na+ ≤ 4). Several spectroscopies (UV-vis, TEM, SEM, XRD, BET) suggest chemical and physical formations of uniform and highly-dispersed Ag nanoparticles in both MZNs and MZTFs. The resulting Ag@MZNs and Ag@MZTFs are successfully applied to detect Rhodamine 6G (R6G) with extra diluted concentrations down to 10-9 M. Plasmonic Ag nanoparticles in mesopores rationally suggest the spatial confinement as well as surface enhanced Raman spectroscopy (SERS) for practical detections of R6G regardless of its strong fluorescence interference.
1. Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J., Adv. Sci. Eng. Med. 2017, 9, 527-544.
2. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J., Chem. Soc. Rev. 2009, 38, 481-494.
3. Khan, I.; Saeed, K.; Khan, I., Arab. J. Chem. 2017.
4. León-Velázquez, M. S.; Irizarry, R.; Castro-Rosario, M. E., J. Phys. Chem. C 2010, 114, 5839-5849.
5. You, H.; Fang, J., Nano Today 2016, 11, 145-167.
6. Crafts, P., Chapter 2 - The Role of Solubility Modeling and Crystallization in the Design of Active Pharmaceutical Ingredients. In Computer Aided Chemical Engineering, Ng, K. M.; Gani, R.; Dam-Johansen, K., Eds. Elsevier: 2007; 23, 23-85.
7. Zongtao, Z.; Yu, H.; Lei, Z.; Runwei, W.; Yi, Y.; Shilun, Q.; Dongyuan, Z.; Feng-Shou, X., Angew. Chem. Int. Ed. 2001, 40, 1258-1262.
8. Jana, N. R.; Gearheart, L.; Murphy, C. J., Langmuir 2001, 17, 6782-6786.
9. Thanh, N. T. K.; Maclean, N.; Mahiddine, S., Chem. Rev. 2014, 114, 7610-7630.
10. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E., Dalton Trans. 2015, 44, 17883-17905.
11. Sagitha, P.; Sarada, K.; Muraleedharan, K., T. Nonferr. Metal. Soc. 2016, 26, 2693-2700.
12. Mavani, K.; Shah, M., IJERT 2013, 2, 1-5.
13. Malassis, L.; Dreyfus, R.; Murphy, R. J.; Hough, L. A.; Donnio, B.; Murray, C. B., RSC Adv. 2016, 6, 33092-33100.
14. Agnihotri, S.; Mukherji, S.; Mukherji, S., RSC Adv. 2014, 4, 3974-3983.
15. Wang, H.; Qiao, X.; Chen, J.; Ding, S., Colloids Surf., A 2005, 256, 111-115.
16. Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P., Spectrochim. Acta, Part B 2006, 61, 2-30.
17. Mariotti, D.; Sankaran, R. M., J. Phys. D: Appl. Phys. 2010, 43, 323001.
18. Chiang, W.-H.; Richmonds, C.; Mohan Sankaran, R., Plasma Sources Sci. Technol. 2010, 19, 034011.
19. Han, J.; Fang, P.; Jiang, W.; Li, L.; Guo, R., Langmuir 2012, 28, 4768-4775.
20. Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G., Nature 2013, 498, 82.
21. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chem. Phys. Lett. 1974, 26, 163-166.
22. Wang, K.; Li, S.; Petersen, M.; Wang, S.; Lu, X., Nanomaterials 2018, 8.
23. Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L., Biosensors 2019, 9.
24. Halvorson, R. A.; Vikesland, P. J., Environ. Sci. Technol. 2010, 44, 7749-7755.
25. Willets, K. A.; Van Duyne, R. P., Annu. Rev. Phys. Chem. 2007, 58, 267-297.
26. Dvoynenko, M. M.; Wang, H.-H.; Hsiao, H.-H.; Wang, Y.-L.; Wang, J.-K., J. Phys. Chem. C 2017, 121, 26438-26445.
27. Stockman, M. I., Physics Today 2011, 64, 39-44.
28. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Chem. Mater. 2018, 30, 8303-8313.
29. Zhang, X.; Sui, H.; Wang, X.; Su, H.; Cheng, W.; Wang, X.; Zhao, B., PCCP 2016, 18, 30053-30060.
30. Li, W.; Zamani, R.; Rivera Gil, P.; Pelaz, B.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R. A.; Parak, W. J.; Arbiol, J.; Cabot, A., J. Am. Chem. Soc. 2013, 135, 7098-7101.
31. He, S.; Chua, J.; Tan, E. K. M.; Kah, J. C. Y., RSC Adv. 2017, 7, 16264-16272.
32. Kalachyova, Y.; Erzina, M.; Postnikov, P.; Svorcik, V.; Lyutakov, O., Appl. Surf. Sci. 2018, 458, 95-99.
33. Li, X.; Batchelor-McAuley, C.; Compton, R. G., ACS Sensors 2019, 4, 464-470.
34. Jiang, J.; Zou, S.; Ma, L.; Wang, S.; Liao, J.; Zhang, Z., ACS Appl. Mater. Interfaces 2018, 10, 9129-9135.
35. Hejazy, M.; Koohi, M. K.; Bassiri Mohamad Pour, A.; Najafi, D., Nanomed Res J 2018, 3, 1-9.
36. Maier, S. A., Opt. Express 2006, 14, 1957-1964.
37. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Chem. Rev. 2011, 111, 3669-3712.
38. Sotomayor, F.; A Cychosz, K.; Thommes, M., Acc. Mater. Surf. Res. 2018, 3, 34-50.
39. Ciesla, U.; Schüth, F., Microporous Mesoporous Mater. 1999, 27, 131-149.
40. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, 10834-10843.
41. Yang, C. M.; Sheu, H. S.; Chao, K. J., Adv. Funct. Mater. 2002, 12, 143-148.
42. Yang, C.-m.; Liu, P.-h.; Ho, Y.-f.; Chiu, C.-y.; Chao, K.-j., Chem. Mater. 2003, 15, 275-280.
43. Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A., J. Phys. Chem. B 2005, 109, 2192-2202.
44. Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M., Chem. Soc. Rev. 2012, 41, 5577-5587.
45. Qasim, M.; R Singh, B.; H Naqvi, A.; Paik, P.; Das, D., Nanotechnology 2015, 26, 285102.
46. Shi, J.; Hou, S.; Huang, J.; Wang, S.; Huan, W.; Huang, C.; Liu, X.; Jiang, R.; Qian, W.; Lu, J.; Wang, X.; Shi, W.; Huang, R.; Chen, J., Nanoscale 2017, 9, 8970-8981.
47. Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y., J. Phys. Chem. C 2016, 120, 24382-24388.
48. Lai, Y.-H.; Chen, S.-W.; Hayashi, M.; Shiu, Y.-J.; Huang, C.-C.; Chuang, W.-T.; Su, C.-J.; Jeng, H.-C.; Chang, J.-W.; Lee, Y.-C.; Su, A.-C.; Mou, C.-Y.; Jeng, U. S., Adv. Funct. Mater. 2014, 24, 2544-2552.
49. Zhu, J.; Kónya, Z.; Puntes, V. F.; Kiricsi, I.; Miao, C. X.; Ager, J. W.; Alivisatos, A. P.; Somorjai, G. A., Langmuir 2003, 19, 4396-4401.
50. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Chem. Soc. Rev. 2013, 42, 3862-3875.
51. Yan, X.; Wang, L.; Qi, D.; Lei, J.; Shen, B.; Sen, T.; Zhang, J., RSC Adv. 2014, 4, 57743-57748.
52. Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S., Int. J. Mol. Sci 2016, 17.
53. Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B., Res Pharm Sci 2014, 9, 385-406.
54. Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S., Appl. Surf. Sci. 2013, 266, 337–343.
55. Zohdy, K., Int. J. Electrochem. Sci. 2015, 10, 414-431.
56. Baset, S.; Akbari, H.; Zeynali, H.; Shafie, M., Dig. J Namomater Bios.. 2011, 6, 709-716.
57. Epp, J., Materials Characterization Using Nondestructive Evaluation (NDE) Methods 2016, 81-124.
58. Bykkam, S.; Ahmadipour, M.; Narisngam, S.; Rao, K.; Chidurala, S., Advances in Nanoparticles 2015, 4, 1-10.
59. Chen, Z.; Tang, Y.-J.; Xie, T.-T.; Chen, Y.; Li, Y.-Q., J Fluoresc. 2008, 18, 93-100.
60. Cheng, W. D.; Wu, Z. J.; Gu, X. H.; Lin, F.; Xing, X. Q.; Mo, G.; Wu, Z. H., Mater. Chem. Phys. 2015, 152, 48-53.