簡易檢索 / 詳目顯示

研究生: 謝欣涵
Hsin-Han Hsieh
論文名稱: 不銹鋼薄板應用脈衝式雷射銲接之數值分析
Numerical analysis of stainless steel welding with pulsed laser
指導教授: 屠名正
Twu, Ming-Jenq
鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 83
中文關鍵詞: 雷射銲接有限元素法數值分析溫度場角變形不銹鋼
英文關鍵詞: Laser welding, Finite element, Numerical analysis, Temperature field, Angular distortion, Stainless steel
論文種類: 學術論文
相關次數: 點閱:412下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值分析方法模擬對接薄板雷射銲接之過程,並以實驗所得量測結果對照作驗證。主要係探討溫度場與應力場的變化情形,銲接材料為SUS 304不銹鋼,方法為Nd:YAG雷射銲接。數值模擬採用有限元素分析軟體ANSYS,考慮非線性材料特性且利用熱-力結構耦合分析過程。實驗使用熱電偶量測溫度循環曲線,再以游標高度規測量銲後角變形。
    分析結果顯示,在溫度場分析中,薄板雷射銲接僅需施加高斯柱狀體熱源且利用銲接峰值功率計算出的脈衝時間,能精準的模擬出溫度分佈。在應力場分析中,因銲接熱源的高溫作用使銲道附近有較高的溫度梯度存在,且受到遠離銲道熱源周圍材料的拘束,因而產生較高的壓縮熱應力。隨銲接熱源的消失,靠近銲道附近區域受到冷卻而收縮,故產生較高的拉伸殘留應力。
    對照數值模擬分析結果與實驗量測數據,顯示出本研究的有限元素分析可準確的模擬不銹鋼薄板雷射銲接過程。

    This study simulates the laser welding process for butt joint of sheet metal verified by experiments. It aims at to investigate the changes of the temperature and stress field. The method of welding process is Nd: YAG laser welding with SUS 304 stainless steel as welding material. The finite element software Ansys is used for numerical simulation, which employs thermo-mechanical coupling process with consideration on non-linear material characteristics. The experiments measure the thermal cycle temperature in the welding process with thermocouple and the angular distortion with vernier height gage.
    The analysis results show that to accurately simulate the temperature distribution in the laser welding for sheet metal it only requires to apply the Gauss cylinder volume heat source with pulse time figured out from peak power. The temperature fields adjacent to the heat source are rather steep because of the locally concentrated heat source. The transient thermal stresses are in compressive state since the expansions of these regions are restrained by surrounding cold metal that is at lower temperatures. As the heat source had passed by, the fusion zones have been cooled and hence have a tendency of contraction. A great tensile residual stress was produced in solidified welds, and then rapidly decreased over the area which is far away from welded zone.
    Compare experimental data with results from simulation, it shows that the finite element analysis of this study can accurately simulate the laser welding process for butt joint of sheet metal.

    誌 謝 I 摘 要 II Abstract III 目 錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻探討 4 2.1不銹鋼之特性與分類 4 2.1.1 SUS 304 不銹鋼分類 4 2.1.2 SUS 304 不銹鋼的銲接特性 5 2.2銲接溫度場研究發展 6 2.3銲接變形研究發展 9 2.4銲接應力應變研究發展 11 2.5銲接變形 14 2.6銲接殘留應力 15 2.6.1 銲接殘留應力簡介 15 2.6.2 銲接殘留應力之形成 16 2.7材料特性對銲件變形與殘留應力的影響 18 2.8銲接過程之理論分析 19 2.8.1 熱學模式分析 20 2.8.2 力學模式分析 24 2.8.3 銲接過程之耦合分析 25 2.8.4 熱源分佈之選擇 26 2.9銲接過程之非線性分析 27 2.9.1 幾何非線性 27 2.9.2 材料非線性 27 2.9.3 狀態非線性 27 第三章 分析與實驗之方法 29 3.1 幾何尺寸與材料特性 29 3.2 熱量輸入條件 31 3.3 分析假設條件 31 3.3.1 模型假設 31 3.3.2 材料特性 31 3.3.3 初始條件與邊界條件 32 3.4 分析模型 33 3.4.1 網格劃分 33 3.4.2 元素類型 34 3.5 熱源模型 36 3.5.1 面熱源:高斯熱源分佈 36 3.5.2 體熱源:高斯柱狀熱源分佈 37 3.5.3 組合熱源 38 3.6 實驗方法 39 3.6.1 實驗材料與設備 39 3.6.2 銲接實驗 42 第四章 結果與討論 44 4.1 銲接溫度場 44 4.1.1 銲接熱源選取 44 4.1.2 溫度場分佈 46 4.1.3 縱向銲接熱循環 50 4.1.4 橫向銲接熱循環 51 4.2 銲接變形 55 4.2.1 角變形 58 4.2.2 縱向變形 60 4.3 銲接應力場 64 4.3.1 暫態熱應力分析 65 4.3.2 暫態熱應力分析 66 4.3.3 殘留熱應力分析 66 4.3.4 殘留熱應力分析 68 4.3.5 縱向應力分析 70 4.3.6 橫向應力分析 72 第五章 結論與建議 74 5.1 結論 74 5.2 建議 75 參考文獻 76

    1. 吳銘誠, “不銹鋼電弧爐氧化渣之再利用研究”, 高雄第一科技大學, 碩士論文 (2003).
    2. 王振欽,”銲接學”, 高立圖書有限公司, pp. 2134-3140 (1999).
    3. V. P. Kujanpaa , N. J. Suutala, T. K. Takalo and T. JI. Moisio, Welding research International, Vol. 9, pp. 55 (1979).
    4. J. Dowden, M. Davis and P. Kapadia, “Some aspect of the fluid dynamics of laser welding “, Journal of fluid mechanics, Vol.126, pp. 123-146 (1983).
    5. 川拉達尹著,熊第京等譯,”銲接熱效應溫度場、殘餘應力、變形”,機械工業出版社, (1997).
    6. 雷片林著,莊鴻壽等譯,”焊接熱過程計算”,中國工業出版,(1958).
    7. 陳楚等,”數值分析在焊接中的應用”,上海交通大學出版,(1985).
    8. 武傳松,”焊接熱過程數值分析”,哈爾濱:哈爾濱工業大學出版社, (1990).
    9. 林得超,”焊接過程應力應變特徵及其控制的數值模擬”,西安交通大學,博士學位論文, (1997).
    10. J. Wang, et al. ,”Improvement in Numerical Accuracy and Stability of 3-D FEM Analysis in Welding”, Welding Journal, Vol.75, No.4, pp. 129-134 (1996).
    11. Wang Jian-hua, et al., “An FEM model of buckling distortion during welding of thin plate”, J. of Shanghai Jiaotong University, Vol.4, No. 2, pp. 69-72 (1999).
    12. 徐家園,”複雜構件三維銲接過程虛擬分析技術研究”, 廣西大學, 碩士論文 (2003).
    13. X. He, P. W. Fuerschbach and T. DebRoy, “ Heat transfer and fluid flow during laser spot welding of 304 stainless steel” , J. Phys. ,Vol. 36, pp.1388-1398 (2003).
    14. Fenggui Lu. Shun Yao, Songnian Lou and Yongbing Li, “Modeling and finite element analysis on GTAW arc and weld pool” , Computational Materials Science, Vol. 29, pp. 371–378 (2004).
    15. H. Du, L. Hu, J. Liu, X. Hu, Comput. Mater. Sci., Vol. 29, No. 4, pp. 419– 427 (2004).
    16. Q.G. Meng, H.Y. Fang, J.G. Yang and S.D. Ji. “Analysis of temperature and stress field in Al alloy_s twin wire welding”, Theoretical and Applied Fracture Mechanics,Vol. 44, pp. 178–186 (2005).
    17. L. Yu-cheng, Y. Wen-xia, and L. Cai-hui, et. al., “Simulation on temperature field of TIG welding of copper without preheating”, Transactions of Nonferrous Metals Society of China, Vol.16, No. 44, pp. 838-842(2006).
    18. GuoMing Han, Jian Zhao and JianQang Li, “Dyanmic simulation of the temperature field of stainless steel laser welding”, Materials and Design, Vol. 28, pp. 240-245 (2007).
    19. Jamshid Sabbaghzadeh, Maryam Azizi and M. Javad Torkamany, “Numerical and experimental investigation of seam welding with a pulsed laser”, Optics and Laser Technology, Vol. 40, pp. 289-296 (2008).
    20. M. Watanabe and K.Satoh,”F undamental study on buckling of thin steel platedue to bead-welding”, Journal of Japan Welding Society, Vol. 27, No.6, pp. 13-20 (1959).
    21. M. Watanabe and K. Satoh, ”Efect of welding conditions on theshrinkage distortion in welded structures”,Welding Journal,Vol.40, No.8, pp.377-384 (1961).
    22. C. Taniguchi , ”Out-of-plane distortion caused by fillet welds in aluminum”, Master's thesis. MIT,Cambrid ge,Mass (1972).
    23. K. Satoh and T. Terasaki,”Effect of welding conditions on residual stress distributions and welding deformation in welded structures materials”, Journal of Japan Welding Society, Vol.45, No.1, pp. 42-53 (1976).
    24. L. Karlsson, M. Jonsson, L .E. Lindgrenet al, ”Residual stresses and
    deformations in a welded thin-walled pipe” Pressure Vessels and Piping D ivision,Vol.173, No.7, pp. 23-37 (1989).
    25. J. M. J. McDill, A .S.Oddy and R .C. Reed,” Predicting residual stress and distortion when welding aeroengine alloys”, Canadian Aeronauticsand Space Jo urnal,Vol.44, No.2, pp.68-72 (1998).
    26. S.R. Daniewicz, M. D.McAninch and B. McFarland,” Application of distortion control technology during fabrication of large offshore structures”,Proc.of A WS/ORNLI nternational Conferenceon Modeling and Control of Joining Processes (1993).
    27. S.C. Park,” Distortion mechanisms and control methodology for welding thin-plate panel structures”, Ph .D. thesis,The Ohio State University,Columbus,Ohio (1998).
    28. M. S. Han,” Fundamental studieson welding-induced distortion in thin plates”, Ph .D.thesis,The Ohio State Un iversity,Columbus,Ohio (2002).
    29. X.M. Zhong , H.Murakawa and Y. Ueda,”Bucking behavior of plates under idealized inherent strain”, Transaction of JWRI, Vol. 24, No.2, pp. 87-91 (1995).
    30. 汪建華、戚新海,鐘小敏等,”焊接架構三維熱變形的有限元類比上海交通大學學報”, Vol. 28, No. 6, pp.59-65 (1994).
    31. 汪建華,戚新海,鐘小敏,”壓縮機焊接變形的三維數值類比”,機械工程學報,Vol. 32, No.1, pp.85-91 (1996).
    32. 汪建華、陸皓,”預測焊接變形的殘餘塑性應變有限元方法”,上海交通大學學報,Vol. 31, No. 4, pp. 53-56 (1997).
    33. 汪建華,陸皓,魏良武,”固有應變有限元法預測焊接變形理論及其應用”,焊接學報, Vol. 23, No. 6, pp. 36-40 (2002).
    34. C. L. Tsai, S. C. Park and W. T. Cheng, “ Welding Distortion of a Thin-Plate Panel Structure”, Welding Journal,Vol.78, No. 5, pp. 156-165 (1999).
    35. C. L.Tsai, W.T.Cheng and T. Lee,” Modeling strategy for control of welding- induced distortion”, Modeling of Casting,Welding and Advanced Solidification Processes VII, pp. 335-345 (1999).
    36. 鹿安理,史清宇,趙海燕等,”厚板焊接過程溫度場、應力場的三維有限元數值模擬”,中國機械,Vol.12, No.2, pp.183-186 (2001).
    37. 趙海燕,鹿安理,史清宇等,”焊接架構CAE中數值類比技術的實現”,中國機械工程,Vol.11, No.7, pp.732-734 (2002).
    38. Shi Qingyu, Lu Anli, Zhao Haiyam et al.,”Development and application of the adaptive mesh technique in the three-dimensional numerical simulation of the welding process”, Journal of Materials Processing Technology,Vol. 12, pp. 167-172 (2002).
    39. 蔡志鵬趙海燕,吳廷等,”串熱源模型及其在焊接數值類比中的應用”,機械工程學報,Vol. 37, No. 4, pp.25-28 (2001).
    40. 薛忠明,”金屬構件熔化焊接熱力分析與模擬研究”, 北京航空航天大學, 碩士論文 (2003).
    41. G. Casalino, S. J. Hu and W. Hou, “ Deformation prediction and quality evaluation of the gas metal arc welding butt weld” , Proc. Instn Mech. Engrs, Vol. 217, pp.1615-1622 (2003).
    42. Wang Qiang and Li Donglin, “Dynamic Simulation on Temperature and Stress Field of Plate Surfacing Based on ANSYS”, Journal of Wuhan University of Technology, Vol. 28, No. 6, pp. 866-869 (2004).
    43. X.D. He , J. X. Zhang, S. L. Gong, Y. R. Feng,” Finite element analysis of laser welding residual stressand distortion in welded joints of TC4 titanium alloy”, Materia lScience and Engineerin, Vol.8, pp.39-43 (2005).
    44. L. Tall, “ Calculation of residual stresses in perspective” ,IEEE Transactions on Nuclear Science, pp.49-62 (1978).
    45. 上田幸雄等, “有限要素法”, 熱彈塑性舉動解析, 熔接學會誌, Vol.6 pp.61-63 (1973).
    46. H. D. Hibbert and P.V. Marcal, “ A numerical thermo- mechanical model for the welding and subsequent loading of a fabricated structure. Computer and Structures”, Vol. 3, pp. 1145-1174 (1973).
    47. 李冬林, ”焊接應力和變形的數值模擬研究”, 武漢理工大學, 碩士論文 (2003).
    48. T. INOUE and D.Y. JU, “Thermo-mechanical Simulation of Some Types of Steady Continuous Casting Processes”, Advances in Continuum Mechanics, O. Bruller, V.Mannl, J.Najar, (eds.), Spinger-Verlag, pp. 389-406(1991).
    49. Y. Shim, Z. Feng, S. Lee, D. S. Kim, J. Jaeger, J. C. Paparitan and C. L. Tsai, “Determination of Residual Stress in Thick-Section Weldments”, Welding Journal, Vol. 71, pp.305-312 (1992).
    50. S. E. Chidlac, “Thermal stress analysis due to welding processes by the finite element method”, Computers and Structures, Vol. 46, No.03, pp. 407- 412 (1993).
    51. Bachorski A. , Painter M. , Smailes A. , Wahab M. A.,” Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach,”Journal of Materials Processing Technology, Vol. 92-93, No. 30, pp. 405-409 (1999).
    52. 汪建華,”虛擬工程與焊接力學數值類比”,第十次全國焊接學術會議IT與焊接專題會議, Vol.10, (2001).
    53. X. K. Zhu and Y. J. Chao, “Effects of temperature-dependent material properties on welding simulation”, Computers and Strucures , Vol.80, No. 11, pp.967-976 (2002).
    54. C. D. Jang, C. H. Lee and D. E. Ko, “prediction of welding deformations of stiffened panels”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment,Vol. 216, pp.133-143 (2002).
    55. Y. Li, J. Wang, M. Chen and X. Shen, “Finite element analysis of residual stress in the welded zone of a high strength steel” , Bull. Mater. Sci., Vol.27, No. 2 , pp. 127–132 (2004).
    56. Alberg H., “Simulation of welding and heat treatment modelling and validation”, PhD thesis, Lulea University of Technology, Sweden (2005).
    57. M. Abid and M. Siddique, “Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint” , International Journal of Pressure Vessels and Piping,Vol.82, pp. 860–871 (2005).
    58. 曾光宏,”不銹鋼銲件變形與殘留應力之研究”, 國立交通大學,博士論文 (2000).
    59. "Welding Handbook", 8th edn, Vol. 1, Miami, American Welding Society (1987).
    60. 蔡曜隆,”銲接溫度與應力之分析實驗”, 國立交通大學, 碩士論文 (2001).
    61. 陳炳森, 計算機輔助焊接技術, 北京機械工業出版社, pp.105-130 (1999).
    62. 王長利, “焊接溫度場與應力場的數值模擬”, 瀋陽工業大學, 碩士論文 (2005).
    63. Saeed, Moaveni., Finite Element Anlysis – Theory and Application with ANSYS.
    64. 黃禮伸, ”平板對接銲之殘留應力分析”, 國立成功大學, 碩士論文 (2003).
    65. M.A. Wahab, M. J. Painter, “ Numerical models of gas metal arc welds using experimentally determined weld pool shapes as there presentation of the welding heat source”, In ternational Journal of Pressure Vesselsand Piping, Vol. 73, No. 2, pp.153-159 (1997).
    66. V. Pavelic, R.Tanbakuchi, O.A.Uyehara et al., “Experiment and computed temperature histories in gas tungsten-arc welding of thin plates”, Welding Journal, Vol. 48, No. 7, pp. 295–305 (1969).
    67. L.M Chong., “Predicting welding hardness”, D. M, Eng, Thesis. Ottawa, Canada: Carleton University, pp. 52–57 (1982).
    68. 董航海, ”激光薄板拼焊過程溫度場與應力應變場之數值分析”, 華中科技大學, 碩士論文 (2004).
    69. Y. Ueda, K. Nakacho, and T. Shimizu, J. Press. Vessel Technol.,Vol. 108, pp. 14-23 (1986).
    70. Metals Handbook, 9th edn, Vol. 3, Ohio, American Society for Metals., (1980).
    71. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, Singapore, John Wiley & Sons (1985).
    72. A. J. Chapman, “Fundamentals of Heat Transfer”, New York, Macmillan Publishing Company (1987).
    73. E. Kula and V. Weiss, “Residual Stress and Stress Relaxation”, New York, Proceedings of the Twenty-eighth Sagamore Army Materials Research Conference Plenum Press (1982).
    74. M. F. Rothman, “High-Temperature Property Data: FERROUS ALLOYS”, ASM, pp. 9.26-9.32 (1988).
    75. 李存洲, ”激光深熔焊熱場的數值模擬研究”, 北京航空航天大學, 碩士論文 (2004).
    76. R. Mueller, in:Proceedings of the ICALE094, pp. 509 (1994).
    77. N.Sonti, M. F.Amateau, “Finite-element modeling of heat flow in deep-penetration laser welds in aluminum alloys”, Numerical Ileat Transfer,Part A, Vol.16, pp. 351-378 (1989).
    78. 何小東, 張建勛, 鞏水利, 馮耀榮, “TC4鈦合金激光焊接應力變形有限元分析”, 材料工程, Vol. 8, pp.39-42 (2005).

    QR CODE