簡易檢索 / 詳目顯示

研究生: 陳冠豪
Chen, Kuan-Hao
論文名稱: 以飛秒雷射誘發多光子離子化質譜法與電子撞擊離子化質譜法分析人體呼氣中氣體分子及對離子化效率之比較
Comparison of ionization efficiency between femtosecond laser-induced multiphoton ionization (MPI) and electron impact ionization (EI) for the detection of human exhaled gases
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 飛秒雷射多光子離子化源氣相層析質譜術固相微萃取揮發性有機化合物
英文關鍵詞: multiphoton ionization, solid phase microextraction
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.006.2019.B05
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別利用氣相層析電子撞擊式質譜儀(gas chromatography-electron ionization-mass spectrometry, GC-EI/ MS)以及飛秒雷射誘發多光子離子化飛行時間質譜儀(femtosecond laser-induced multiphoton ionization/time-of-flight mass spectrometry, FL-MPI/ TOFMS)研究並且比較非吸菸者/吸菸者呼吸氣體中成分的質譜資訊。藉由固相微萃取(solid phase microextraction, SPME)提升分析物訊號強度後,本研究能夠在人體呼氣樣品中檢測出40種以上的揮發性有機化合物(VOCs)其中有24種揮發性有機化合物可以被鑑定出來。GC-EI / MS利於偵測己烷(hexane),乙脲(ethylurea),甲苯(toluene)和檸烯(limonene)。相對的,FL-MPI/ TOFMS則利於偵測鄰二甲苯(o-xylene),萘(naphthalene)和甲基丙基苯(methylpropyl benzene)等化合物。而有些化合物在兩種質譜儀中皆有被偵測到,例如丙酮(acetone)以及異戊二烯(isoprene)。除此之外,本研究亦利用FL-MPI/ TOFMS檢測同一名志願者吸菸後的呼氣樣品,發現其中含有有2,3-二甲基吡嗪(2,3-dimethly pyrazine),2-甲基吡啶(2-methyl pyridine)和吡嗪(pyrazine)等化合物。GC-EI/MS和FL-MPI/TOFMS的組合,成功地為研究人體呼氣中的VOCs提供一種新的檢測方法。

    Characteristic mass fragmentation of breathing gases from nonsmoker/smoker was investigated and compared by means of gas chromatography-electron ionization-mass spectrometry (GC-EI/MS) and femtosecond laser excited multiphoton ionization/time-of-flight mass spectrometry (FL-MPI/TOFM) methods, respectively. Solid phase microextraction (SPME) was used to improve the concentration levels. As a result, more than 40 types of volatile organic compounds (VOCs) in human breath were detected and 24 types of them were identified by database. The use of GC-EI/MS was useful for the detection of hexane, ethylurea, toluene, and limonene. In contrast to this, FL-MPI/TOFMS was useful for the detection of o-xylene, naphthalene, and methylpropyl benzene, etc. Some compounds were detected by either methods, including acetone and isoprene, etc. However, 2,3-dimethly pyrazine, 2-methyl pyridine, and pyrazines were found this time by FL-MPI/TOFM from the same volunteer after he smoked a cigarette. The combination of GC-EI/MS and FL-MPI/TOFMS was successfully to provide a new methodology for the study of VOCs from human breath.

    圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究目的 1 1-2 揮發性有機物簡介 3 1-2-1 人體呼氣中揮發性有機物及檢測 3 1-2-2 人體呼氣採樣方法 5 1-2-3 抽菸對呼氣之影響 6 第二章 實驗方法及原理 8 2-1 固相微萃取法(solid phase microextraction) 8 2-1-1 固相微萃取裝置與萃取步驟 8 2-2 氣相層析質譜法 10 2-2-1 氣相層析儀 10 2-2-2 介面 13 2-2-3 質譜儀 14 第三章 儀器與實驗方法 22 3-1 儀器與耗材 22 3-2 呼氣樣品的採樣及進樣 24 3-3 氣相層析儀參數設定 25 3-4 質譜儀參數設定 26 第四章 研究過程和結果討論 27 4-1 以固相微萃取法對人體呼氣之研究 27 4-1-1 固相微萃取條件最佳化 28 4-1-2 電子撞擊式質譜儀固相微萃取前後結果差異 30 4-1-3 飛秒雷射誘發多光子離子化法質譜儀固相微萃取前後結果差異 32 4-2 質譜資訊比對 34 4-3 未抽菸人體呼氣樣品分析 40 4-4 抽菸者呼氣樣品分析 43 4-5 實驗結果比較 47 第五章 結論 50 5-1 實驗裝置方面 50 5-2 呼氣樣品分析方面 50 第六章 參考文獻 52

    參考文獻
    1. Martinez-Lozano Sinues, P., R. Zenobi, and M. Kohler, Analysis of the Exhalome: A Diagnostic Tool of the Future. Chest, 2013. 144(3): p. 746-749.
    2. de Laurentiis, G., et al., Separating Smoking-Related Diseases Using NMR-Based Metabolomics of Exhaled Breath Condensate. Journal of Proteome Research, 2013. 12(3): p. 1502-1511.
    3. Caldeira, M., et al., Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology. Journal of Chromatography A, 2011. 1218(24): p. 3771-3780.
    4. Bajtarevic, A., et al., Noninvasive detection of lung cancer by analysis of exhaled breath. BMC cancer, 2009. 9: p. 348-348.
    5. Agusti, À. and J.B. Soriano, COPD as a Systemic Disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2008. 5(2): p. 133-138.
    6. Miekisch, W., J.K. Schubert, and G.F.E. Noeldge-Schomburg, Diagnostic potential of breath analysis—focus on volatile organic compounds. Clinica Chimica Acta, 2004. 347(1): p. 25-39.
    7. Cao, W. and Y. Duan, Breath Analysis: Potential for Clinical Diagnosis and Exposure Assessment. Clinical Chemistry, 2006. 52(5): p. 800.
    8. Minh, T.D.C., D.R. Blake, and P.R. Galassetti, The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Research and Clinical Practice, 2012. 97(2): p. 195-205.
    9. Di Francesco, F., et al., Breath analysis: trends in techniques and clinical applications. Microchemical Journal, 2005. 79(1): p. 405-410.
    10. Cao, W. and Y. Duan, Current Status of Methods and Techniques for Breath Analysis. Critical Reviews in Analytical Chemistry, 2007. 37(1): p. 3-13.
    11. Peled, N., et al., Non-invasive Breath Analysis of Pulmonary Nodules. Journal of Thoracic Oncology, 2012. 7(10): p. 1528-1533.
    12. Hunt, J., Exhaled breath condensate: An evolving tool for noninvasive evaluation of lung disease. Journal of Allergy and Clinical Immunology, 2002. 110(1): p. 28-34.
    13. Fens, N., et al., Exhaled Breath Profiling Enables Discrimination of Chronic Obstructive Pulmonary Disease and Asthma. American Journal of Respiratory and Critical Care Medicine, 2009. 180(11): p. 1076-1082.
    14. Fleischer, M., et al., Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors. Sensors and Actuators B: Chemical, 2002. 83(1): p. 245-249.
    15. Di Natale, C., et al., Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors and Bioelectronics, 2003. 18(10): p. 1209-1218.
    16. Romagnuolo, J., D. Schiller, and R.J. Bailey, Using breath tests wisely in a gastroenterology practice: an evidence-based review of indications and pitfalls in interpretation. American Journal Of Gastroenterology, 2002. 97: p. 1113.
    17. Deng, C., X. Zhang, and N. Li, Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography–mass spectrometry. Journal of Chromatography B, 2004. 808(2): p. 269-277.
    18. Ochiai, N., et al., Analysis of volatile sulphur compounds in breath by gas chromatography–mass spectrometry using a three-stage cryogenic trapping preconcentration system. Journal of Chromatography B: Biomedical Sciences and Applications, 2001. 762(1): p. 67-75.
    19. Crofford, O.B., et al., Acetone in breath and blood. Transactions of the American Clinical and Climatological Association, 1977. 88: p. 128-139.
    20. Righettoni, M., A. Tricoli, and S.E. Pratsinis, Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Analytical Chemistry, 2010. 82(9): p. 3581-3587.
    21. Choi, S.-J., et al., Selective Detection of Acetone and Hydrogen Sulfide for the Diagnosis of Diabetes and Halitosis Using SnO2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces, 2014. 6(4): p. 2588-2597.
    22. Grote, C. and J. Pawliszyn, Solid-Phase Microextraction for the Analysis of Human Breath. Analytical Chemistry, 1997. 69(4): p. 587-596.
    23. Wang, S., S. Hu, and H. Xu, Analysis of aldehydes in human exhaled breath condensates by in-tube SPME-HPLC. Analytica Chimica Acta, 2015. 900: p. 67-75.
    24. Yu, H., L. Xu, and P. Wang, Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath. Journal of Chromatography B, 2005. 826(1): p. 69-74.
    25. Wang, C., et al., Determination of fentanyl in human breath by solid-phase microextraction and gas chromatography–mass spectrometry. Microchemical Journal, 2009. 91(2): p. 149-152.
    26. Martin, A.N., et al., Human breath analysis: methods for sample collection and reduction of localized background effects. Analytical and Bioanalytical Chemistry, 2010. 396(2): p. 739-750.
    27. Pionnier, E., et al., Evaluation of the solid phase microextraction (SPME) technique for the analysis of human breath during eating. Vol. 25. 2005. 193-206.
    28. Ma, H., et al., Analysis of human breath samples of lung cancer patients and healthy controls with solid-phase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC × GC). Analytical Methods, 2014. 6(17): p. 6841-6849.
    29. Ulanowska, A., et al., Determination of volatile organic compounds in human breath for Helicobacter pylori detection by SPME-GC/MS. Biomedical Chromatography, 2011. 25(3): p. 391-397.
    30. Ligor, T., et al., The analysis of healthy volunteers' exhaled breath by the use of solid-phase microextraction and. Journal of Breath Research, 2008. 2(4): p. 046006.
    31. Cazzola, M., et al., Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Research and Practice, 2015. 1(1): p. 7.
    32. Deng, C., et al., Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. Journal of Chromatography B, 2004. 810(2): p. 269-275.
    33. Miekisch, W., et al., Assessment of propofol concentrations in human breath and blood by means of HS-SPME–GC–MS. Clinica Chimica Acta, 2008. 395(1): p. 32-37.
    34. Gaspar, E.M., et al., Organic metabolites in exhaled human breath—A multivariate approach for identification of biomarkers in lung disorders. Journal of Chromatography A, 2009. 1216(14): p. 2749-2756.
    35. Shaw, S., et al., Volatile Organic Compound Emissions from Dairy Cows and Their Waste as Measured by Proton-Transfer-Reaction Mass Spectrometry. Vol. 41. 2007. 1310-6.
    36. Tuzson, B., et al., Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser. Analytical Chemistry, 2017. 89(12): p. 6377-6383.
    37. Li, A., T. Imasaka, and T. Imasaka, Optimal Laser Wavelength for Femtosecond Ionization of Polycyclic Aromatic Hydrocarbons and Their Nitrated Compounds in Mass Spectrometry. Analytical Chemistry, 2018. 90(4): p. 2963-2969.
    38. Quang, H.D., et al., Development of Multiphoton Ionization Technique for Detection of Polycyclic Aromatic Hydrocarbon (PAH) in Solution. Open Journal of Applied Sciences, 2015. Vol.05No.10: p. 5.
    39. Li, A., et al., Suppression of fragmentation in multiphoton ionization mass spectrometry using a near-infrared femtosecond laser as an ionization source. Analyst, 2017. 142(20): p. 3942-3947.
    40. García-Gómez, D., et al., Identification of 2-Alkenals, 4-Hydroxy-2-alkenals, and 4-Hydroxy-2,6-alkadienals in Exhaled Breath Condensate by UHPLC-HRMS and in Breath by Real-Time HRMS. Analytical Chemistry, 2015. 87(5): p. 3087-3093.
    41. Phillips, M., et al., Variation in volatile organic compounds in the breath of normal humans. Journal of Chromatography B: Biomedical Sciences and Applications, 1999. 729(1): p. 75-88.
    42. Gelmont, D., R.A. Stein, and J.F. Mead, Isoprene — The main hydrocarbon in human breath. Biochemical and Biophysical Research Communications, 1981. 99(4): p. 1456-1460.
    43. Rooth, G. and S. Östenson, ACETONE IN ALVEOLAR AIR, AND THE CONTROL OF DIABETES. The Lancet, 1966. 288(7473): p. 1102-1105.
    44. Tassopoulos, C.N., D. Barnett, and T. Russell Fraser, BREATH-ACETONE AND BLOOD-SUGAR MEASUREMENTS IN DIABETES. The Lancet, 1969. 293(7609): p. 1282-1286.
    45. Claire, T., et al., Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. Journal of Breath Research, 2009. 3(4): p. 046004.
    46. Davidson, L.S.P., MERCAPTAN IN THE BREATH OF PATIENTS WITH SEVERE LIVER DISEASE. The Lancet, 1949. 254(6570): p. 197-198.
    47. Simenhoff, M.L., et al., Biochemical Profile of Uremic Breath. New England Journal of Medicine, 1977. 297(3): p. 132-135.
    48. Schubert, J.K., et al., CO2-controlled sampling of alveolar gas in mechanically ventilated patients. Journal of Applied Physiology, 2001. 90(2): p. 486-492.
    49. A study of reactive oxygen species in mainstream of cigarette. Indoor Air, 2005. 15(2): p. 135-140.
    50. Ou, B. and D. Huang, Fluorescent Approach to Quantitation of Reactive Oxygen Species in Mainstream Cigarette Smoke. Analytical Chemistry, 2006. 78(9): p. 3097-3103.
    51. Phillips, M., et al., Effect of oxygen on breath markers of oxidative stress. European Respiratory Journal, 2003. 21(1): p. 48.
    52. Phillips, M., et al., Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet, 1999. 353(9168): p. 1930-1933.
    53. Phillips, M., et al., Detection of Lung Cancer With Volatile Markers in the Breatha. Chest, 2003. 123(6): p. 2115-2123.
    54. Burdick, A.D., et al., Benzo(<strong><em>a</em></strong>)pyrene Quinones Increase Cell Proliferation, Generate Reactive Oxygen Species, and Transactivate the Epidermal Growth Factor Receptor in Breast Epithelial Cells. Cancer Research, 2003. 63(22): p. 7825.
    55. Euler, D.E., S.J. Davé, and H. Guo, Effect of cigarette smoking on pentane excretion in alveolar breath. Clinical Chemistry, 1996. 42(2): p. 303.
    56. Jo, W.-K. and K.-W. Pack, Utilization of Breath Analysis for Exposure Estimates of Benzene Associated with Active Smoking. Environmental Research, 2000. 83(2): p. 180-187.
    57. Plebani, C., et al., An optimized sampling and GC-MS analysis method for benzene in exhaled breath, as a biomarker for occupational exposure. Talanta, 1999. 50(2): p. 409-412.
    58. Poli, D., et al., Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respiratory Research, 2005. 6(1): p. 71.
    59. Chen Ms, X., et al., Chen X, Xu F, Wang Y, Pan Y, Lu D, Wang P, Ying K, Chen E, Zhang WA study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 110(4): 835-844. Vol. 110. 2007. 835-844.
    60. Gómez-Ríos, G.A., et al., Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction–Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART). Analytical Chemistry, 2017. 89(13): p. 7240-7248.
    61. Capone, D.L., et al., Evolution and Occurrence of 1,8-Cineole (Eucalyptol) in Australian Wine. Journal of Agricultural and Food Chemistry, 2011. 59(3): p. 953-959.
    62. Szostek, B. and J.H. Aldstadt, Determination of organoarsenicals in the environment by solid-phase microextraction–gas chromatography–mass spectrometry. Journal of Chromatography A, 1998. 807(2): p. 253-263.
    63. 黃世光, 超飽和設計的研究, in 統計研究所. 2000, 國立中央大學: 桃園縣. p. 38.
    64. Karasek, F.W. and R.E. Clement, PREFACE, in Basic Gas Chromatography – Mass Spectrometry, F.W. Karasek and R.E. Clement, Editors. 1988, Elsevier: Amsterdam. p. V.
    65. Harris, F.M., Quadrupole storage mass spectrometry. Vol. 102 in chemical analysis: A series of monographs on analytical chemistry and its applications. Raymond E. March and Richard J. Hughes John Wiley and Sons, New York, 1989, pp. 471. Rapid Communications in Mass Spectrometry, 1991. 5(1): p. 58-58.
    66. Yang, X., T. Imasaka, and T. Imasaka, Determination of Pesticides by Gas Chromatography Combined with Mass Spectrometry Using Femtosecond Lasers Emitting at 267, 400, and 800 nm as the Ionization Source. Analytical Chemistry, 2018. 90(7): p. 4886-4893.
    67. Zimmermann, R., et al., Direct observation of the formation of aromatic pollutants in waste incineration flue gases by on-line REMPI-TOFMS laser mass spectrometry. Fresenius' Journal of Analytical Chemistry, 2000. 366(4): p. 368-374.
    68. Wilkerson, C.W., S.M. Colby, and J.P. Reilly, Determination of polycyclic aromatic hydrocarbons using gas chromatography/laser ionization mass spectrometry with picosecond and nanosecond light pulses. Analytical Chemistry, 1989. 61(23): p. 2669-2673.
    69. Kirihara, N., et al., Multipass laser mass spectrometer with extreme jet-cooled pulsed gas. Review of Scientific Instruments, 2006. 77(9): p. 094101.
    70. Matsui, T., et al., Analysis of Persistent Organic Pollutants at Sub-Femtogram Levels Using a High-Power Picosecond Laser for Multiphoton Ionization in Conjunction with Gas Chromatography/Time-of-Flight Mass Spectrometry. Analytical Sciences, 2012. 28(5): p. 445-450.
    71. Message, G.M., Practical aspects of chromatography/mass spectrometry, chapter 5. 1984.
    72. Matsumoto, J., B. Nakano, and T. Imasaka, Development of a Compact Supersonic Jet/Multiphoton Ionization/Time-of-Flight Mass Spectrometer for the On-site Analysis of Dioxin, Part I: Evaluation of Basic Performance. Analytical Sciences, 2003. 19(3): p. 379-382.
    73. Sanchez, J.M. and R.D. Sacks, Development of a Multibed Sorption Trap, Comprehensive Two-Dimensional Gas Chromatography, and Time-of-Flight Mass Spectrometry System for the Analysis of Volatile Organic Compounds in Human Breath. Analytical Chemistry, 2006. 78(9): p. 3046-3054.
    74. Sanchez, J.M. and R.D. Sacks, GC Analysis of Human Breath with A Series-Coupled Column Ensemble and A Multibed Sorption Trap. Analytical Chemistry, 2003. 75(10): p. 2231-2236.
    75. 狩野, 早., et al., ヒト呼気に含まれる揮発性有機化合物測定システムを用いた日内変動の測定. 生体医工学, 2014. 52(Supplement): p. O-5-O-6.
    76. Brugnone, F., et al., Breath and blood levels of benzene, toluene, cumene and styrene in non-occupational exposure. International Archives of Occupational and Environmental Health, 1989. 61(5): p. 303-311.
    77. Thomas Hector, C., et al., Miniaturization of breath sampling with silicon chip: application to volatile tobacco markers tracking. Journal of Breath Research, 2018. 12(4): p. 046011.
    78. O'Hara, M.E., et al., Limonene in exhaled breath is elevated in hepatic encephalopathy. Journal of breath research, 2016. 10(4): p. 046010-046010.
    79. Joachim , D.P., A.S. Matthew , and W.F. Kenneth Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns. Journal of Breath Research, 2014. 8(3): p. 037107.
    80. Peng, G., et al., Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotechnology, 2009. 4: p. 669.
    81. Scheepers, P.T.J., et al., Determination of exposure to benzene, toluene and xylenes in Turkish primary school children by analysis of breath and by environmental passive sampling. Science of The Total Environment, 2010. 408(20): p. 4863-4870.
    82. Buszewski, B., et al., Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomedical Chromatography, 2009. 23(5): p. 551-556.
    83. Xing, C., et al., A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Measurement Science and Technology, 2005. 16(8): p. 1535.
    84. Phillips, M., et al., Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis, 2007. 87(1): p. 44-52.
    85. Phillips, M., et al., Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis, 2012. 92(4): p. 314-320.
    86. Tang, Y., et al., Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons. Talanta, 2015. 140: p. 109-114.
    87. Li, A. and T. Imasaka, Internal standards for use in the comprehensive analysis of polychlorinated aromatic hydrocarbons using gas chromatography combined with multiphoton ionization mass spectrometry. Journal of Chromatography A, 2016. 1470: p. 111-117.
    88. Imasaka, T., Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry using a femtosecond laser. Analytical and Bioanalytical Chemistry, 2013. 405(22): p. 6907-6912.
    89. Sharanagouda, U. and T.B. Karegoudar, Degradation of 2-Methylnaphthalene by Pseudomonas sp. Strain NGK1. Current Microbiology, 2001. 43(6): p. 440-443.
    90. Rappaport, S.M., S. Waidyanatha, and B. Serdar, Naphthalene and its biomarkers as measures of occupational exposure to polycyclic aromatic hydrocarbons. Journal of Environmental Monitoring, 2004. 6(5): p. 413-416.
    91. Tang, Y., et al., Determination of polycyclic aromatic hydrocarbons and their nitro-, amino-derivatives absorbed on particulate matter 2.5 by multiphoton ionization mass spectrometry using far-, deep-, and near-ultraviolet femtosecond lasers. Chemosphere, 2016. 152: p. 252-258.
    92. Itouyama, N., et al., Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry. Journal of The American Society for Mass Spectrometry, 2016. 27(2): p. 293-300.
    93. Brokl, M., et al., Multivariate analysis of mainstream tobacco smoke particulate phase by headspace solid-phase micro extraction coupled with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A, 2014. 1370: p. 216-229.
    94. Pieraccini, G., et al., Identification and determination of mainstream and sidestream smoke components in different brands and types of cigarettes by means of solid-phase microextraction–gas chromatography–mass spectrometry. Journal of Chromatography A, 2008. 1180(1): p. 138-150.
    95. Alpert, H.R., I.T. Agaku, and G.N. Connolly, A study of pyrazines in cigarettes and how additives might be used to enhance tobacco addiction. Tobacco Control, 2016. 25(4): p. 444.
    96. Short, L.C., R. Frey, and T. Benter, Real-Time Analysis of Exhaled Breath via Resonance-Enhanced Multiphoton Ionization-Mass Spectrometry with a Medium Pressure Laser Ionization Source: Observed Nitric Oxide Profile. Applied Spectroscopy, 2006. 60(2): p. 217-222.

    無法下載圖示 本全文未授權公開
    QR CODE