簡易檢索 / 詳目顯示

研究生: 湯博翔
Tang, Po-Hsiang
論文名稱: 金屬有機骨架複合材吸附揮發性有機化合物之研究與軟性X-ray巨觀結構鑑定技術
Metal-Organic Framework Composites for Adsorption of the Volatile Organic Compounds and Soft X-ray Macrostructure Identification Technology
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 林嘉和
Lin, Chia-Her
陳重佑
Chen, Chong-You
宋蕙伶
Sung, Hui-Ling
王迪彥
Wang, Di-Yan
蘇穎穎
So, Pamela-Berilyn
蔡振彥
Tsai, Chen-Yen
詹益慈
Chan, Yi-Tsu
口試日期: 2024/06/04
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 126
中文關鍵詞: 金屬有機骨架揮發性有機汙染物複合材移除結構鑑定
英文關鍵詞: Metal-organic frameworks, volatile organic compounds, composites, removal, structural identification
研究方法: 實驗設計法參與觀察法
DOI URL: http://doi.org/10.6345/NTNU202400745
論文種類: 學術論文
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要使用金屬有機骨架(Metal-Organic Frameworks, MOFs)與高分子複合進行揮發性有機汙染物的吸附移除,其中探討了靜態和動態等不同種類的吸附方式,並以理論計算來模擬和佐證實驗結果。後面的部分展現一種新型態的穿透式軟性X-ray成像方式,來建構非均相材料在巨觀結構的實際構形。
    論文第一部分為了能符合工業化的需求,我們針對MIL-68(Al)的製備做了改良,與先前報導相比,選用了更為環境友善的異丙醇(IPA)作為合成的主要溶劑,同時藉由晶種的預添加,成功地將製程的產能擴大至原先的500倍,並且在三次的溶劑回收重複合成實驗中,也取得優異的成果,在X-ray繞射圖譜以及N2表面積孔徑分析儀的結果表明,放大製成的產品效能與小量製程的效能一致,甚至更為優異。針對新製備方式的MIL-68(Al),示範了其對乙酸(AA) 吸附能力,即使在100 ppm 的低起始濃度下,也顯示出良好的AA 去除率(100% 去除率),表現出比市售活性碳和沸石更好的吸附效能。
    論文的第二部分同樣進行VOCs的吸附實驗,首先將多種MOFs進行對氣相的甲苯氣體的吸附實驗,進一步將MOFs與聚乙烯醇(PVA)複合生成MOF@PVA的複合粒材,並製備了不同比例的 MOF@PVA 珠複合材料,找出孔隙率最佳的比例進行揮發性有機物的吸附測試。結果成功製備出10%、20%、30% PVA/MOF混摻比例的高分子顆粒,且10% MIL-68@PVA有著高達0.7 g/g的甲苯氣體吸附量,與市售活性碳和沸石吸附劑相比有著1.5~3倍的吸附優越性。而在低濃度的甲苯動態吸附測試結果中,10% HKUST-1@PVA顆粒卻有著比10% MIL-68@PVA顆粒更好的甲苯吸附效率,總吸附量接近3倍差距,並且透過動力學模型的模擬成功找出了較適合解釋在低濃度動態下微孔MOFs對甲苯的吸附機理,表明在高濃度甲苯環境如工廠中更適合以MIL-68@PVA顆粒作為吸附劑,而低濃度工業及家庭廢氣則更適合小孔徑的HKUST-1@PVA。
    論文的第三部分介紹了一種新型態巨觀結構的鑑定技術,利用軟X射線斷層掃描技術透過目視觀察不同激發能量在不同能帶中的相應圖像來檢查金屬有機骨架的多維結構,例如核殼和空心骨架,或是不同的金屬元素。結果表明,利用軟X射線斷層掃描(SXT)可以更為直觀的觀察結構中金屬的分佈,以及觀察MOFs所具有的中空孔類型。這項透過 SXT 對 MOF 進行的開創性評估顯示了多維金屬有機框架結構識別的出色性能。

    This thesis primarily explores the adsorption and removal of Volatile organic compounds (VOCs) using Metal-Organic Frameworks (MOFs) in conjunction with polymer composites. It investigates different adsorption methods, including static and dynamic, and employs theoretical calculations to simulate and corroborate experimental results. The latter part presents a novel form of transmission soft X-ray imaging technique to construct the actual configuration of heterogeneous materials at a macroscopic scale.
    The first part of the thesis focuses on the enhancement of MIL-68(Al) synthesis to meet industrial demands. Compared to previous reports, a more environmentally friendly solvent, isopropanol (IPA), was utilized in the synthesis. Additionally, by pre-adding seed crystals, the production capacity was successfully increased by 500 times. Excellent results were achieved in three cycles of solvent recovery and repeat synthesis experiments, as evidenced by X-ray diffraction patterns and N2 surface pore size distribution analysis, indicating consistent or even superior performance of the upscaled product compared to small-scale synthesis. Demonstrations of the adsorption capacity of the newly prepared MIL-68(Al) for acetic acid (AA) showed remarkable removal efficiency (100% removal rate) even at low initial concentrations of 100 ppm, outperforming commercially available activated carbon and zeolite in adsorption efficiency.
    The second part of the thesis also conducted adsorption experiments of VOCs. Various MOFs were first tested for the adsorption of toluene gas in the vapor phase. Subsequently, MOFs were combined with polyvinyl alcohol (PVA) to form composite beads (MOF@PVA), and different ratios of MOF@PVA composite beads were prepared to determine the optimal pore volume for adsorption of volatile organic compounds. Results showed successful preparation of polymer beads with 10%, 20%, and 30% PVA/MOF hybrid ratios, with 10% MIL-68@PVA exhibiting a high toluene gas adsorption capacity of up to 0.7 g/g, representing 1.5 to 3 times higher adsorption superiority compared to commercially available activated carbon and zeolite adsorbents. Interestingly, in dynamic adsorption tests at low toluene concentrations, 10% HKUST-1@PVA beads exhibited better toluene adsorption efficiency than 10% MIL-68@PVA beads, with nearly a 3-fold difference in total adsorption, and the simulation of kinetic models successfully identified a mechanism better suited to explain the adsorption of toluene by microporous MOFs at low concentrations, indicating that MIL-68@PVA beads are more suitable as adsorbents in environments with high toluene concentrations such as factories, while HKUST-1@PVA with smaller pore size is more suitable for industrial and household waste gases with low concentrations.
    The third part of the thesis introduces a novel technique for identifying macroscopic structures, utilizing soft X-ray tomography to visually observe the multidimensional structures of metal-organic frameworks, such as core-shell and hollow frameworks, or different metal elements. The results demonstrate that soft X-ray tomography (SXT) provides a more intuitive means of observing the distribution of metals within the structure and identifying the types of hollow pores present in MOFs. This pioneering evaluation of MOFs via SXT showcases its outstanding performance in identifying multidimensional metal-organic framework structures.

    摘要 I ABSTRACT IV 目錄 VII 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 MOF 介紹 1 1-2 有機揮發汙染物 (VOCS) 15 1-3 MOF複合材-造粒 21 1-4 研究動機 24 第二章 藥品與鑑定方法 27 2-1 實驗藥品 27 2-2 儀器型號及鑑定方法 33 第三章 MIL-68(AL)大量合成與乙酸吸附實驗 36 3-1 MOF合成 36 3-2 結果討論 39 3-3 結論 61 第四章 金屬有機骨架複合粒狀孔洞材料對甲苯之移除研究 63 4-1 MOF和複合材的製備 64 4-2 結果討論 69 4-3 結論 100 第五章 軟 X 射線斷層掃描進行多維金屬有機骨架的結構識別 103 5-1 MOF的製備 105 5-2 結果討論 107 5-3 結論 114 第六章 結論 115 參考文獻 117 附錄A 124

    (1) Eram, S.; Fahmina, Z. Introductory Chapter: Metal Organic Frameworks (MOFs). In Metal-Organic Frameworks, Fahmina, Z., Eram, S. Eds.; IntechOpen, 2016; p Ch. 1.
    (2) Kuroda, R.; Yoshida, J.; Nakamura, A.; Nishikiori, S.-i. Annealing assisted mechanochemical syntheses of transition-metal coordination compounds and co-crystal formation. CrystEngComm 2009, 11 (3), 427-432,
    (3) Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336 (6084), 1018-1023.
    (4) Gadipelli, S.; Guo, Z. Postsynthesis Annealing of MOF-5 Remarkably Enhances the Framework Structural Stability and CO2 Uptake. Chem. Mater. 2014, 26 (22), 6333-6338.
    (5) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
    (6) Saha, D.; Deng, S. Hydrogen Adsorption on Metal-Organic Framework MOF-177. Tsinghua Sci. Technol. 2010, 15 (4), 363-376.
    (7) Liang, C.-C.; Shi, Z.-L.; He, C.-T.; Tan, J.; Zhou, H.-D.; Zhou, H.-L.; Lee, Y.; Zhang, Y.-B. Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2017, 139 (38), 13300-13303.
    (8) Drake, T.; Ji, P.; Lin, W. Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis. Acc. Chem. Res. 2018, 51 (9), 2129-2138.
    (9) Gao, X.; Hai, X.; Baigude, H.; Guan, W.; Liu, Z. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport. Sci. Rep. 2016, 6 (1), 37705.
    (10) Chernikova, V.; Yassine, O.; Shekhah, O.; Eddaoudi, M.; Salama, Khaled N. Highly sensitive and selective SO2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. J. Mater. Chem. A 2018, 6 (14), 5550-5554,
    (11) Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187-219.
    (12) Chae, H. K.; Kim, J.; Friedrichs, O. D.; O’Keeffe, M.; Yaghi, O. M. Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of [Zn4O(TCA)2] Having the Pyrite Topology. Angew. Chem., Int. Ed. 2003, 42 (33), 3907-3909.
    (13) Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327 (5967), 846-850.
    (14) Liu, Q.; Cong, H.; Deng, H. Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal–Organic Frameworks. J. Am. Chem. Soc. 2016, 138 (42), 13822-13825.
    (15) Razavi, S. A. A.; Masoomi, M. Y.; Islamoglu, T.; Morsali, A.; Xu, Y.; Hupp, J. T.; Farha, O. K.; Wang, J.; Junk, P. C. Improvement of Methane–Framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. Inorg. Chem. 2017, 56 (5), 2581-2588.
    (16) Das, M. C.; Guo, Q.; He, Y.; Kim, J.; Zhao, C.-G.; Hong, K.; Xiang, S.; Zhang, Z.; Thomas, K. M.; Krishna, R.; et al. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. J. Am. Chem. Soc. 2012, 134 (20), 8703-8710.
    (17) Qin, J.-S.; Zhang, S.-R.; Du, D.-Y.; Shen, P.; Bao, S.-J.; Lan, Y.-Q.; Su, Z.-M. A Microporous Anionic Metal–Organic Framework for Sensing Luminescence of Lanthanide(III) Ions and Selective Absorption of Dyes by Ionic Exchange. Chem. - Eur. J. 2014, 20 (19), 5625-5630.
    (18) Hu, L.; Chen, L.; Peng, X.; Zhang, J.; Mo, X.; Liu, Y.; Yan, Z. Bifunctional metal-doped ZIF-8: A highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition. Microporous Mesoporous Mater. 2020, 299, 110123.
    (19) Xing, Y.; Luo, L.; Li, Y.; Wang, D.; Hu, D.; Li, T.; Zhang, H. Exploration of Hierarchical Metal–Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. J. Am. Chem. Soc. 2022, 144 (10), 4393-4402.
    (20) Barthelet, K.; Marrot, J.; Ferey, G.; Riou, D. VIII(OH)[O2C-C6H4-CO2].(HO2C-C6H4-CO2H)x(DMF)y(H2O)z(or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks? Chem. Commun. (Camb.) 2004, (5), 520-521.
    (21) Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M. The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorg. Chem. 2008, 47 (24), 11892-11901.
    (22) Fateeva, A.; Horcajada, P.; Devic, T.; Serre, C.; Marrot, J.; Grenèche, J.-M.; Morcrette, M.; Tarascon, J.-M.; Maurin, G.; Férey, G. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid. Eur. J. Inorg. Chem. 2010, 2010 (24), 3789-3794.
    (23) Yang, Q.; Vaesen, S.; Vishnuvarthan, M.; Ragon, F.; Serre, C.; Vimont, A.; Daturi, M.; De Weireld, G.; Maurin, G. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. J. Mater. Chem. 2012, 22 (20), 10210-10220.
    (24) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 2006, 103 (27), 10186-10191.
    (25) Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chem. Mater. 2013, 25 (1), 17-26.
    (26) Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications. Microporous Mesoporous Mater. 2012, 157, 131-136.
    (27) Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F.; de Vos, D.; et al. The Structure of the Aluminum Fumarate Metal–Organic Framework A520. Angew. Chem., Int. Ed. 2015, 54 (12), 3664-3668.
    (28) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130 (42), 13850-13851.
    (29) Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S. Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 2012, 28 (44), 15606-15613.
    (30) Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z. Studies on Photocatalytic CO2 Reduction over NH2‐Uio‐66 (Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks. Chem. - Eur. J. 2013, 19 (42), 14279-14285.
    (31) Stassen, I.; Styles, M.; Van Assche, T.; Campagnol, N.; Fransaer, J.; Denayer, J.; Tan, J.-C.; Falcaro, P.; De Vos, D.; Ameloot, R. Electrochemical film deposition of the zirconium metal–organic framework UiO-66 and application in a miniaturized sorbent trap. Chem. Mater. 2015, 27 (5), 1801-1807.
    (32) Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H. B.; Yaghi, O. M. Definitive molecular level characterization of defects in UiO‐66 crystals. Chem. Mater. 2015, 54 (38), 11162-11167.
    (33) Zheng, H.-Q.; Liu, C.-Y.; Zeng, X.-Y.; Chen, J.; Lü, J.; Lin, R.-G.; Cao, R.; Lin, Z.-J.; Su, J.-W. MOF-808: a metal–organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 2018, 57 (15), 9096-9104.
    (34) Campesi, M. A.; Luzi, C. D.; Barreto, G. F.; Martínez, O. M. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration. J. Environ. Manage. 2015, 154, 216-224.
    (35) Belaissaoui, B.; Le Moullec, Y.; Favre, E. Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach. Energy 2016, 95, 291-302.
    (36) Wantz, E.; Kane, A.; Lhuissier, M.; Amrane, A.; Audic, J.-L.; Couvert, A. A mathematical model for VOCs removal in a treatment process coupling absorption and biodegradation. Chem. Eng. J. 2021, 423, 130106.
    (37) Dumont, E.; Darracq, G.; Couvert, A.; Couriol, C.; Amrane, A.; Thomas, D.; Andrès, Y.; Le Cloirec, P. VOC absorption in a countercurrent packed-bed column using water/silicone oil mixtures: Influence of silicone oil volume fraction. Chem. Eng. J. 2011, 168 (1), 241-248.
    (38) Zhang, X.; Gao, B.; Creamer, A. E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102-123.
    (39) Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl. Catal., B 2021, 281, 119447.
    (40) Qian, Q.; Gong, C.; Zhang, Z.; Yuan, G. Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study. Adsorption 2015, 21 (4), 333-341.. Annual Report; 2007. https://www.nj.gov/treasury/taxation/pdf/annual/2007.pdf.
    (41) McInnes, G. Joint EMEP/CORINAIR atmospheric emission inventory guidebook; First ed. 1996.
    (42) Li, Y. H.; Lee, C. W.; Gullett, B. K. The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon 2002, 40 (1), 65-72.
    (43) Singh, H. B.; Tabazadeh, A.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Sachse, G.; Crawford, J. H.; Shetter, R.; Brune, W. H. Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air-sea exchange models. Geophys. Res. Lett. 2003, 30 (16).
    (44) Mitsui, T.; Tsutsui, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Catalytic abatement of acetaldehyde over oxide-supported precious metal catalysts. Appl. Catal., B 2008, 78 (1), 158-165.
    (45) Lovelock, J. E. Natural halocarbons in the air and in the sea. Nature 1975, 256 (5514), 193-194.
    (46) Broadgate, W. J.; Liss, P. S.; Penkett, S. A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean. Geophys. Res. Lett. 1997, 24 (21), 2675-2678.
    (47) Ren, J.; Musyoka, N. M.; Langmi, H. W.; Swartbooi, A.; North, B. C.; Mathe, M. A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications. Int. J. Hydrogen Energy 2015, 40 (13), 4617-4622.
    (48) Valizadeh, B.; Nguyen, T. N.; Smit, B.; Stylianou, K. C. Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gas-Sparged Column. Adv. Funct. Mater. 2018, 28 (30), 1801596.
    (49) O'Neill, L. D.; Zhang, H.; Bradshaw, D. Macro-/microporous MOF composite beads. J. Mater. Chem. 2010, 20 (27), 5720-5726, Aguado, S.; Canivet, J.; Farrusseng, D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem. Commun. 2010, 46 (42), 7999-8001.
    (50) Chen, Y.; Huang, X.; Zhang, S.; Li, S.; Cao, S.; Pei, X.; Zhou, J.; Feng, X.; Wang, B. Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. J. Am. Chem. Soc. 2016, 138 (34), 10810-10813. Carné-Sánchez, A.; Stylianou, K. C.; Carbonell, C.; Naderi, M.; Imaz, I.; Maspoch, D. Protecting Metal–Organic Framework Crystals from Hydrolytic Degradation by Spray-Dry Encapsulating Them into Polystyrene Microspheres. Adv. Mater. 2015, 27 (5), 869-873.
    (51) Urbanova, M.; Pavelkova, M.; Czernek, J.; Kubova, K.; Vyslouzil, J.; Pechova, A.; Molinkova, D.; Vyslouzil, J.; Vetchy, D.; Brus, J. Interaction Pathways and Structure–Chemical Transformations of Alginate Gels in Physiological Environments. Biomacromolecules 2019, 20 (11), 4158-4170.
    (52) Dou, X.; Wang, Q.; Li, Z.; Ju, J.; Wang, S.; Hao, L.; Sui, K.; Xia, Y.; Tan, Y. Seaweed-Derived Electrospun Nanofibrous Membranes for Ultrahigh Protein Adsorption. Adv. Funct. Mater. 2019, 29 (46), 1905610.
    (53) Zhu, H.; Zhang, Q.; Zhu, S. Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites. ACS Appl. Mater. Interfaces 2016, 8 (27), 17395-17401.. Lee, S. J.; Hann, T.; Park, S. H. Seawater Desalination Using MOF-Incorporated Cu-Based Alginate Beads without Energy Consumption. ACS Appl. Mater. Interfaces 2020, 12 (14), 16319-16326.
    (54) Wang, N.; Yang, L. Y.; Wang, Y. G.; Ouyang, X. K. Fabrication of Composite Beads Based on Calcium Alginate and Tetraethylenepentamine-Functionalized MIL-101 for Adsorption of Pb(II) from Aqueous Solutions. Polymers (Basel) 2018, 10 (7).
    (55) Seoane, B.; Sebastián, V.; Téllez, C.; Coronas, J. Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(Al). CrystEngComm 2013, 15 (45), 9483-9490,
    (56) Cruz, A. J.; Pires, J.; Carvalho, A. P.; Brotas de Carvalho, M. Adsorption of Acetic Acid by Activated Carbons, Zeolites, and Other Adsorbent Materials Related with the Preventive Conservation of Lead Objects in Museum Showcases. J. Chem. Eng. Data 2004, 49 (3), 725-731.

    下載圖示
    QR CODE