簡易檢索 / 詳目顯示

研究生: 張以太
Chang, Yii-Tay
論文名稱: 具有低熱預算閘極電偶極層之金氧半電容平整帶電壓調變技術
Technology of Flat-band Voltage Modulation for Metal-Oxide-Semiconductor Capacitor by Dipole Layer Gate Stack Toward Low-Thermal Budget
指導教授: 李敏鴻
Lee, Min-Hung
楊承山
Yang, Chan-Shan
口試委員: 李敏鴻
Lee, Min-Hung
楊承山
Yang, Chan-Shan
胡璧合
Hu, Pi-Ho
口試日期: 2024/07/30
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 46
中文關鍵詞: 電晶體氧化銦介面電偶極臨界電壓調變低熱預算
英文關鍵詞: Transistor, Indium Oxide, Interface Dipole, Threshold Voltage modulation, Low Thermal Budget
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401775
論文種類: 學術論文
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先進的半導體技術中,奈米片技術(Nanosheet, NS)應用於閘極環繞(Gate-all-around, GAA)電晶體和互補場效電晶體 (Complementary FET, CFET),由於其優越的閘極控制能力和更高的密度,已成為最新的技術趨勢。然而,這項技術也面臨諸多挑戰,尤其是奈米片間距(Tsus)的空間限制及 CFET 對於低溫製程的限制,使得調變多階臨界電壓(VT)變得越來越困難。
    研究從使用物理氣相沉積(Physical vapor deposition, PVD)電偶極層(Dipole layer)的金屬氧化物電容(MOSCAP)元件開始,逐步討論至原子層沉積(Atomic layer deposition, ALD)電偶極層元件。在PVD 電偶極層元件系列實驗,本實驗嘗試兩種材料Indium oxide (In2O3) 與 Aluminum oxide (Al2O3),並分別製作電偶極層優先(Dipole-first)及電偶極層置後(Dipole-last) 元件,且製程溫度皆不超過500 °C,控制在低溫製程,具低熱預算的特性,本研究中可以看到In2O3 Dipole-first 元件在平整帶電壓位移 (Flat band voltage shift, VFB shift)的表現優異,最大的 VFB shift 達 -380 mV ,另外在以Al2O3作為電偶極層的元件也成功展示不同方向的VFB shift值達290 mV,實現多階的平整帶電壓調變。
    綜上所述,多階臨界電壓之技術研究在先進的半導體技術中的發展前景廣闊,但需克服製程複雜性、熱預算和臨界電壓調整等多方面的挑戰,本論文透過研究此創新技術來推動臨界電壓調變技術的進一步發展。

    In advanced semiconductor technology, nanosheet technology is applied in Gate-all-around (GAA) transistors and Complementary Field-Effect Transistors (CFET) due to its superior current control ability and higher density, making it the latest technological trend. However, this technology also faces numerous challenges, particularly the spatial limitations of nanosheet spacing (Tsus) and the constraints of CFET on low-temperature processes, which make multi-stage threshold voltage (VT) modulation increasingly difficult.
    The research begins with PVD dipole layer devices and gradually discusses ALD dipole layer devices. In PVD dipole layer devices, we tried two materials: Indium oxide (In2O3) and Aluminum oxide (Al2O3), and fabricated both Dipole-first and Dipole-last devices, with process temperatures not exceeding 500 °C, showcasing the characteristic of low thermal budget. In this thesis, the In2O3 dipole-first devices demonstrated outstanding performance in flat band voltage shift (VFB shift), achieving a maximum VFB shift of -380 mV. Additionally, devices employing Al2O3 as the dipole layer successfully exhibited VFB shifts in a divergent direction, reaching values up to 290 mV, overall achieving multi-stage flat-band voltage modulation.
    In summary, technical researches on multi-stage threshold voltage in advanced semiconductor technology have broad development prospects but must overcome challenges in process complexity, thermal budget, and threshold voltage adjustment. This study aims to promote further development through technological innovation.

    第一章 緒論 1 1-1 電晶體發展簡介 1 1-2 Nanosheet 結構與挑戰 2 1-3 介面電偶極調變工程 5 1-3-1 簡介 5 1-3-2 介面電偶極形成機制 6 1-4 介面電偶極於多階VT的應用 9 1-5介面電偶極於元件製程 11 1-5-1電偶極元件架構 11 1-5-2 高溫熱退火-電偶極的形成 12 第二章 用於平整帶電壓調變之製程開發 13 2-1元件架構 13 2-1-1 簡介 13 2-1-2 控片製程 14 2-1-3 Dipole-first製程 15 2-1-4 Dipole-last製程 16 2-2 製程實作與機台 17 2-2-1 標準清洗流程與化學介面層 17 2-2-2 電偶極層沉積、退火與濕蝕刻製程 18 2-2-3 high-k介電層ALD製程 20 2-2-3 氮化鈦薄膜保護層ALD製程 22 2-2-4 PVD上電極製程 23 2-2-4 曝光製程 24 2-2-5 蝕刻製程 26 第三章 PVD電偶極層之平整帶電壓調變元件 27 3-1 簡介 27 3-2 量測環境架設 27 3-2 PVD 電偶極層元件結果與討論 29 3-2-2 電偶極層TEM材料分析 31 3-2-3電偶極層XPS材料分析 33 3-2-3 結論 35 第四章 ALD電偶極層平整帶電壓調變元件 36 4-1 簡介 36 4-2 製程流程介紹 36 4-3 電性分析 37 4-5 結論 40 第五章 總結&未來工作 41 5-1 總結 41 5-2 未來工作 41 參考文獻 42 論文發表 45

    [1] K. Y. Cheng, “Introduction. In: III–V Compound Semiconductors and Devices.”, in Springer Cham, 2020, pp.1-9.
    [2] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, F. Andrieu. ‘‘7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing,’’ in VLSI Technology Symp., 2020, TC1.2.
    [3] Y. J. Mii, ‘‘Semiconductor innovations, from device to system,’’ in VLSI Technology Symp., 2022, pp. 276-281.
    [4] P. Schuddinck, F. M. Bufler, Y. Xiang, A. Farokhnejad, G. Mirabelli, A. Vandooren, B. Chehab, A. Gupta, C. Roda Neve, G. Hellings and J. Ryckaert.,‘‘PPAC of sheet-based CFET configurations for 4 track design with 16nm metal pitch,’’ in VLSI Technology Symp., 2022, pp. 365-366.
    [5] Z. Q. Liu, W. K. Chim, S. Y. Chiam, J. S. Pan and C. M. Ng. ‘‘An interface dipole predictive model for high-k dielectric/semiconductor heterostructures using the concept of the dipole neutrality point,’’ Journal of Materials Chemistry., 2012, 22, 17887–17892.
    [6] K. Kita, A. Toriumi, ‘‘Origin of electric dipoles formed at high-k/SiO2 interface,’’ Applied Physics Letters, 2009, vol. 94, iss. 13, 132902.
    [7] A. Toriumi, T. Nabatame, ‘‘Anomalous VFB Shift in High-k Gate Stacks-Is its Origin at the Top or Bottom Interface?- ,’’ ECS Transactions, vol. 25, no. 6, pp. 3-16, 2009.
    [8] H. Arimura, L.-Å. Ragnarsson, Y. Oniki, J. Franco, A. Vandooren, S. Brus, A. Leonhardt , P. Sippola1 , T. Ivanova1 , G. Alessio Verni , R.-J. Chang , Q. Xie , M. Givens , J. Mitard, S. Biesemans, E. Dentoni Litta, and N. Horiguchi. ‘‘Dipole-first gate stack as a scalable and thermal budget flexible multi-Vt solution for nanosheet/CFET devices,’’ in IEDM Tech. Dig., 2021, pp. 290-293.
    [9] J. Yao, Y. Wei, S. Yang, H. Yang, G. Xu, Y. Zhang, L. Cao, X. Zhang, Q. Liu, Z. Wu, H. Yin, Q. Zhang, J. Li and J. Luo., ‘‘Record 7 (N)+ 7 (P) Multiple VT s Demonstration on GAA Si Nanosheet n/pFETs using WFM-Less Direct Interfacial La/Al-Dipole Technique,’’ in IEDM Tec. Dig., 2022, pp. 811-814.
    [10] H. Arimura, H. Mertens, J. Franco, L. Lukose, W. Maqsood, S. Brus, T. Chiarella, A. Impagnatiello, S. Homkar, V. K. Mootheri, C. Yin, G. A. Verni, M. Givens, L. P. B. Lima, S. Biesemans and N. Horiguchi, “Vt Fine-Tuning in Multi-Vt Gate-All-Around Nanosheet nFETsusing Rare-Earth Oxide-based Dipole-First Gate Stack Compatible with CFET Integration”in VLSI Technology Symp, 2024, pp 11.1.
    [11] S. H. Su, H. J. Kong, C. L. Tseng and G. Y. Chen.,‘‘Wet etching mechanism and crystallization of indium–tin oxide layer for application in light-emitting diodes,’’ Japanese Journal of Applied Physics., 2017, vol. 57, 01AE05.
    [12] R. Bao, H. Zhou, M. Wang, D. Guo, BS. Haran, V. Narayanan, R. Divakaruni, “Extendable and manufacturable volume-less multi-Vt solution for 7nm technology node and beyond.”, IEDM, 2018, pp. 28.5.1-28.5.4.
    [13] R. Bao, K. Watanabe, J. Zhang, J. Guo, H. Zhou, A. Gaul, M. Sankarapandian, J. Li, A. R. Hubbard, R. Vega, S. Pancharatnam, P. Jamison, M. Wang, N. Loubet, V. Basker, D. Dechene, D. Guo, B. Haran, H. Bu, M. Khare, “Multiple-Vt Solutions in Nanosheet Technology for High Performance and Low Power Applications”, IEDM, 2019, pp. 11.2.1-11.2.4.
    [14] H. Arimura, H. Mertens, J. Franco, L. Lukose, W. Maqsood, S. Brus, T. Chiarella, A. Impagnatiello, S. Homkar , V. K. Mootheri , C. Yin , G. A. Verni , M. Givens , L. P. B. Lima, S. Biesemans and N. Horiguchi, “Vt Fine-Tuning in Multi-Vt Gate-All-Around Nanosheet nFETs using Rare-Earth Oxide-based Dipole-First Gate Stack Compatible with CFET Integration, ” in VLSI Symp., 2024, 11.1.

    無法下載圖示 本全文未授權公開
    QR CODE