簡易檢索 / 詳目顯示

研究生: 周靜瑜
Ching-Yu Chou
論文名稱: 利用場循環核磁共振中的弛滯技術探測蛋白質動性
Probing protein dynamics by field cycling nuclear magnetic resonance (NMR) relaxation technique
指導教授: 黃太煌
Huang, Tai-Huang
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 154
中文關鍵詞: 核磁共振弛秩高解析度場循環儀蛋白質動性自旋晶格弛秩速率譜密度函數
英文關鍵詞: NMR relaxation, high-resolution field cycling, protein dynamics, spin-lattice relaxation rate, spectral density function
論文種類: 學術論文
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在實驗上,光譜密度函數分析是在核磁共振弛滯研究中對蛋白質動性的直接描述,而在核磁共振弛滯研究中,量測自旋晶格遲緩速率(R1)的磁場分佈則是找尋光譜密度函數的直接路徑。因此,為了探測蛋白質動性,我們設計了一個場循環裝置來量測自旋晶格遲緩速率(R1)的磁場分佈,可量測的磁場範圍為0到14.1特斯拉。這個場循環儀器可在超導磁鐵中快速地移動液態樣品,在約1公尺的距離中移動時間僅需100微秒。移動速度快且穩定,光譜有足夠的再現性。利用此儀器,我們得到了第一組蛋白質的15N-R1全磁場分佈曲線,所量測的蛋白為泛素蛋白(ubiquitin),磁場範圍為0.9-20特斯拉。出人意料地,磁場相依的15N-R1曲線無法吻合傳統的勞倫茲方程式,而產生出新的光譜密度方程式。此方程式可描述分子運動的諧波位能。本研究發現泛素蛋白的骨架動性可分為中央固定區塊和依結構兩端較動態的區塊。然而,除了泛素蛋白的動性分析,另外更重要的發現是,我們能夠從15N-R1磁場相依曲線中找出氨基酸上的諧波位能。結果顯示,位能與結構變化有著高度的相關性,當某個氨基酸具有慢速的結構變化,其位能相對會變高。此一發現可成為泛素蛋白之結構選擇結合機制的進一步證據。

    Spectral density function analysis is a direct description of protein dynamics and can be extracted from NMR relaxation measurements, such as spin-lattice relaxation (R1) dispersion. Toward that goal, we have built a field cycling device for measuring R1 field dispersion curves over the field range of 0-14.1T. The device permit the shuttling of solution protein samples in regular NMR tube to be shuttled up-and-down the 1 meter superconducting magnet bore stably and reproducibly in ~ 100 ms. Using this compact field cycling device, we have obtained the first set of 15N-R1 dispersion curve of a protein, ubiquitin from 0.9 T to 20 T. Surprisingly, the field-dependent 15N-R1 curves of many residues cannot be fit with conventional Lorentzian functions and new spectral density functions based on motions subjected to harmonic potential have to be derived. The backbone dynamic information derived accordingly showed that ubiquitin contains a rigid β-strands core and mobile termini. However, the most novel finding of this thesis work is our ability to determine the harmonic potential energy for each residue from analysis of the R1 dispersion curve. The results showed that potential energy can be correlated to conformational exchange and residues having large potential energy are those exhibiting slow conformational exchange. The discovery could be a further evidence of conformational selection for ubiquitin binding mechanism.

    Contents i English Abstract iii 摘要 iv Frequently Used Symbols and Abbreviations v List of Figures vii List of Tables and Equations ix 1 Introduction 10 1.1 From NMR Relaxation to Molecular Motion 12 1.2 Field Cycling NMR Relaxation 15 1.3 Specific Aims 17 2 Design and Construction of High Speed Field Cycling Device 18 2.1 Design 21 2.2 Performance 27 3 Protein System: Ubiquitin 34 3.1 Introduction 34 3.2 Sample Preparation 35 3.3 NMR Experiment 36 4 Data Fitting and Analysis 41 4.1 Data Process 41 4.2 Spectral Density Function Derivation 42 4.2.1 Conventional Spectral Density Function: Lorentzian Function 43 4.2.2 Observation: Empirical Function 44 4.2.3 Spectral Density Function for Brownian motion in Harmonic Oscillation Potential 47 5 Dynamics of Ubiquitin and the Biological Implications 52 5.1 New Curves of Field Dependent Spin-Lattice Relaxation Rate 53 5.2 Fitting Difficulties 62 6 Future Perspectives 64 6.1 Hardware Improvement 64 6.2 Physical Meaning of Additional Dynamics Parameter 66 6.3 Potential Applications 67 7 Appendixes 69 A. High Speed Sample Transportation Device 69 A.1 Description 69 A.2 Prior Arts 79 A.3 Construction Diagrams 81 A.4 Program Code of Control Program 91 B. Ubiquitin Purification Protocol 138 B.1 Protein Sequence 138 B.2 Clone 138 B.3 Protocol 139 C. Table of Fitting Parameters 143 References 148 Publication 155

    1. Bloembergen N, Purcell EM, & Pound RV (1948) Relaxation Effects in Nuclear Magnetic Resonance Absorption. Physical Review 73(7):679.
    2. Abragam A (1961) The Principles of Nuclear Magnetism (Clarendon Press, Oxford, UK).
    3. Pound RV (1951) Nuclear spin relaxation time in a single crystal of LiF. Phys. Rev. 81:156-156.
    4. Abragam A & Pound RV (1953) Influence of Electric and Magnetic Fields on Angular Correlations. Physical Review 92(4):943.
    5. Argyres PN & Kelley PL (1964) Theory of Spin Resonance and Relaxation. Physical Review 134(1A):A98.
    6. Bloch F (1954) Line-Narrowing by Macroscopic Motion. Physical Review 94(2):496.
    7. Bloch F (1957) Generalized Theory of Relaxation. Physical Review 105(4):1206.
    8. Woessner DE (1962) Nuclear Spin Relaxation in Ellipsoids Undergoing Rotational Brownian Motion. The Journal of Chemical Physics 37(3):647-654.
    9. Wittebort RJ & Szabo A (1978) Theory of NMR relaxation in macromolecules: Restricted diffusion and jump models for multiple internal rotations in amino acid side chains. The Journal of Chemical Physics 69(4):1722-1736.
    10. Halle B & Denisov VP (2001) Magnetic relaxation dispersion studies of biomolecular solutions. Method Enzymol 338:178-201.
    11. Kimmich R, Nusser W, & Gneiting T (1990) Molecular Theory for Nuclear Magnetic-Relaxation in Protein Solutions and Tissue - Surface-Diffusion and Free-Volume Analogy. Colloid Surface 45:283-302.
    12. Nusser W & Kimmich R (1990) Protein Backbone Fluctuations and Nmr Field-Cycling Relaxation Spectroscopy. J Phys Chem-Us 94(15):5637-5639.
    13. Kimmich R & Anoardo E (2004) Field-cycling NMR relaxometry. Prog Nucl Mag Res Sp 44(3-4):257-320.
    14. Redfield AG (1996) Field cycling NMR applied to macromolecular structure and dynamics. NMR as a Structural Tool for Macromolecules, eds Rao BDN & Kemple MD (Plenum Press, New York), pp 123-132.
    15. Noack F (1986) Nmr Field-Cycling Spectroscopy - Principles and Applications. Prog Nucl Mag Res Sp 18:171-276.
    16. Redfield A (2012) High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument. Journal of Biomolecular Nmr 52(2):159-177.
    17. Koenig SH (1995) Classes of Hydration Sites at Protein-Water Interfaces - the Source of Contrast in Magnetic-Resonance-Imaging. Biophysical Journal 69(2):593-603.
    18. Koenig SH & Kellar KE (1995) Theory of 1/T-1 and 1/T-2 Nmrd Profiles of Solutions of Magnetic Nanoparticles. Magnetic Resonance in Medicine 34(2):227-233.
    19. Job C, Zajicek J, & Brown MF (1996) Fast field-cycling nuclear magnetic resonance spectrometer. Rev Sci Instrum 67:2113-2122.
    20. Kimmich R (1997) NMR: Tomography, Diffusometry, Relaxometry. (Springer-Verlag, Heidelberg).
    21. Noack F (Field Cycling Experiments. Encyclopedia of Magnetic Resonance, (John Wiley & Sons), pp 1980-1990.
    22. Redfield AG (2003) Shuttling device for high-resolution measurements of relaxation and related phenomena in solution at low field, using a shared commercial 500 MHz NMR instrument. Magnetic Resonance in Chemistry 41(10):753-768.
    23. Lipari G & Szabo A (1982) Analysis of Nmr Relaxation Data on Macromolecules Using the Model-Free Approach. Biophysical Journal 37(2):A380-A380.
    24. Lipari G & Szabo A (1982) Model-Free Approach to the Interpretation of Nuclear Magnetic-Resonance Relaxation in Macromolecules .1. Theory and Range of Validity. J Am Chem Soc 104(17):4546-4559.
    25. Lipari G & Szabo A (1981) A Model-Free Approach to the Interpretation of Nmr Relaxation in Macromolecules. Biophysical Journal 33(2):A307-A307.
    26. Kay LE, Torchia DA, & Bax A (1989) Backbone Dynamics of Proteins as Studied by N-15 Inverse Detected Heteronuclear Nmr-Spectroscopy - Application to Staphylococcal Nuclease. Biochemistry 28(23):8972-8979.
    27. Mandel AM, Akke M, & Palmer AG (1995) Backbone Dynamics of Escherichia-Coli Ribonuclease Hi - Correlations with Structure and Function in an Active Enzyme. Journal of Molecular Biology 246(1):144-163.
    28. Grinberg F, Kimmich R, & Fischer E (1996) Characterization of director fluctuations in liquid crystals using the dipolar correlation effect of the stimulated echo. Colloid Surface A 115:1-7.
    29. Kimmich BFM, Landis CR, & Powell DR (1996) Synthesis and characterization of boron-containing ferrocenyl ligands for asymmetric catalysis. Organometallics 15(20):4141-4146.
    30. Grinberg F, Kimmich R, Moller M, & Molenberg A (1996) Order fluctuations in the mesophase of polydiethylsiloxane as studied by the dipolar-correlation effect on the stimulated echo. J Chem Phys 105(21):9657-9665.
    31. Muller HP, Kimmich R, & Weis J (1996) NMR flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius. Physical Review E 54(5):5278-5285.
    32. Palmer AG, Rance M, & Wright PE (1991) Intramolecular Motions of a Zinc Finger DNA-Binding Domain from Xfin Characterized by Proton-Detected Natural Abundance C-12 Heteronuclear Nmr-Spectroscopy. Journal of the American Chemical Society 113(12):4371-4380.
    33. Nestle NFEI & Kimmich R (1996) NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents. Biotechnol Bioeng 51(5):538-543.
    34. Schurr JM, Babcock HP, & Fujimoto BS (1994) A Test of the Model-Free Formulas. Effects of Anisotropic Rotational Diffusion and Dimerization. Journal of Magnetic Resonance, Series B 105(3):211-224.
    35. Nestle N & Kimmich R (1996) On the importance of diffusive layers in ion exchange kinetics. Heat Mass Transfer 32(1-2):9-15.
    36. Roberts MF, Cui Q, Turner CJ, Case DA, & Redfield AG (2004) High-Resolution Field-Cycling NMR Studies of a DNA Octamer as a Probe of Phosphodiester Dynamics and Comparison with Computer Simulation. Biochemistry 43(12):3637-3650.
    37. Fares C, et al. (2009) Accessing ns-mu s side chain dynamics in ubiquitin with methyl RDCs. Journal of Biomolecular Nmr 45(1-2):23-44.
    38. Lakomek NA, et al. (2008) Residual dipolar couplings as a tool to study molecular recognition of ubiquitin. Biochem Soc T 36:1433-1437.
    39. Lange OF, et al. (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320(5882):1471-1475.
    40. Palmer AG (1997) Probing molecular motion by NMR. Curr Opin Struc Biol 7(5):732-737.
    41. Clore GM, et al. (1990) Deviations from the Simple 2-Parameter Model-Free Approach to the Interpretation of N-15 Nuclear Magnetic-Relaxation of Proteins. J Am Chem Soc 112(12):4989-4991.
    42. Solomon I (1955) Relaxation Processes in a System of Two Spins. Physical Review 99(2):559.
    43. Clarkson MW, et al. (2009) Mesodynamics in the SARS nucleocapsid measured by NMR field cycling. Journal of Biomolecular Nmr 45(1-2):217-225.
    44. Brougham DF, Horsewill AJ, & Trommsdorff HP (1999) A field-cycling NMR relaxometry investigation of proton tunnelling in a partially disordered system of hydrogen bonds. Chem Phys 243(1-2):189-199.
    45. Horsewill AJ, McGloin CJ, Trommsdorff HP, & Johnson MR (2003) Proton tunnelling in the hydrogen bonds of halogen-substituted derivatives of benzoic acid studied by NMR relaxometry: the case of large energy asymmetry. Chem Phys 291(1):41-52.
    46. Kariyo S, Stapf S, & Blumich B (2005) Site specific proton and deuteron NMR relaxation dispersion in selectively deuterated polyisoprene melts. Macromol Chem Physic 206(13):1292-1299.
    47. Kehr M, Fatkullin N, & Kimmich R (2007) Molecular diffusion on a time scale between nano- and milliseconds probed by field-cycling NMR relaxometry of intermolecular dipolar interactions: Application to polymer melts. J Chem Phys 126(9):-.
    48. Kimmich R, Seitter R-O, Beginn U, Mueller M, & Fatkullin N (1999) Field-cycling NMR relaxometry of polymers confined to artificial tubes: verification of the exponent 3/4 in the spin-lattice relaxation dispersion predicted by the reptation model. Chemical Physics Letters 307(3-4):147-152.
    49. Vieth HM, Grosse S, Gubaydullin F, Scheelken H, & Yurkovskaya AV (1999) Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments. Appl Magn Reson 17(2-3):211-225.
    50. Redfield AG (2003) Shuttling device for high-resolution measurements of relaxation and related phenomena in solution at low field, using a shared commercial 500 MHz NMR instrument. Magn. Reson. Chem. 41(10):753-768.
    51. Roberts MF & Redfield AG (2004) Phospholipid bilayer surface configuration probed quantitatively by (31)P field-cycling NMR. Proc Natl Acad Sci U S A. 101(49):17066-17071.
    52. Ye C, Fu R, Hu J, Hou L, & Ding S (1993) Carbon-13 chemical shift anisotropies of solid amino acids. Magn. Reson. Chem. 31(8):699-704.
    53. Solomon I & Bloembergen N (1956) Nuclear Magnetic Interactions in the HF Molecule. The Journal of Chemical Physics 25(2):261-266.
    54. Pickart CM & Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Bba-Mol Cell Res 1695(1-3):55-72.
    55. Hicke L, Schubert HL, & Hill CP (2005) Ubiquitin-binding domains. Nature reviews. Molecular cell biology 6(8):610-621.
    56. Pickart CM & Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8(6):610-616.
    57. Seibenhener ML, et al. (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24(18):8055-8068.
    58. Alam SL, et al. (2004) Ubiquitin interactions of NZF zinc fingers. EMBO J 23(7):1411-1421.
    59. Kang RS, et al. (2003) Solution Structure of a CUE-Ubiquitin Complex Reveals a Conserved Mode of Ubiquitin Binding. Cell 113(5):621-630.
    60. Ohno A, et al. (2005) Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13(4):521-532.
    61. Prag G, et al. (2003) Mechanism of Ubiquitin Recognition by the CUE Domain of Vps9p. Cell 113(5):609-620.
    62. Sundquist WI, et al. (2004) Ubiquitin recognition by the human TSG101 protein. Mol Cell 13(6):783-789.
    63. Teo H, Veprintsev DB, & Williams RL (2004) Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J Biol Chem 279(27):28689-28696.
    64. Abseher R, Ludemann S, Schreiber H, & Steinhauser O (1995) NMR CROSS-RELAXATION INVESTIGATED BY MOLECULAR-DYNAMICS SIMULATION - A CASE-STUDY OF UBIQUITIN IN SOLUTION. Journal of Molecular Biology 249(3):604-624.
    65. Brutscher B, Bruschweiler R, & Ernst RR (1997) Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by H-1, C-13, and N-15 nuclear magnetic resonance spectroscopy. Biochemistry 36(42):13043-13053.
    66. Carlomagno T, Maurer M, Hennig M, & Griesinger C (2000) Ubiquitin backbone motion studied via NHN-C ' C-alpha dipolar-dipolar and C '-C ' C-alpha/NHN CSA-dipolar cross-correlated relaxation. Journal of the American Chemical Society 122(21):5105-5113.
    67. Chang SL & Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl C-13 and amide N-15 NMR relaxation. J Magn Reson 174(1):43-53.
    68. Li PC & Makarov DE (2004) Simulation of the mechanical unfolding of ubiquitin: Probing different unfolding reaction coordinates by changing the pulling geometry. J Chem Phys 121(10):4826-4832.
    69. Liu Q, Yuan YC, Shen BH, Chen DJ, & Chen Y (1999) Conformational flexibility of a ubiquitin conjugation enzyme (E2). Biochemistry 38(5):1415-1425.
    70. Peti W, Hennig M, Smith LJ, & Schwalbe H (2000) NMR spectroscopic investigation of psi torsion angle distribution in unfolded ubiquitin from analysis of (3)J(C alpha,C alpha) coupling constants and cross-correlated Gamma(c)(N)(H)(N,C alpha H alpha) relaxation rates. Journal of the American Chemical Society 122(48):12017-12018.
    71. Schneider DM, Dellwo MJ, & Wand AJ (1992) FAST INTERNAL MAIN-CHAIN DYNAMICS OF HUMAN UBIQUITIN. Biochemistry 31(14):3645-3652.
    72. Simorellis AK & Flynn PF (2006) Fast local backbone dynamics of encapsulated ubiquitin. Journal of the American Chemical Society 128(30):9580-9581.
    73. Tjandra N, Feller SE, Pastor RW, & Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from N-15 NMR relaxation. Journal of the American Chemical Society 117(50):12562-12566.
    74. Tuttle T, Kraka E, Wu AA, & Cremer D (2004) Investigation of the NMR spin-spin coupling constants across the hydrogen bonds in ubiquitin: The nature of the hydrogen bond as reflected by the coupling mechanism. Journal of the American Chemical Society 126(16):5093-5107.
    75. Wand AJ, Urbauer JL, McEvoy RP, & Bieber RJ (1996) Internal dynamics of human ubiquitin revealed by C-13-relaxation studies of randomly fractionally labeled protein. Biochemistry 35(19):6116-6125.
    76. Chou C-Y, Chu M, Chang C-F, & Huang T-h (2012) A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR. J Magn Reson 214(0):302-308.
    77. Burum DP & Ernst RR (1980) Net Polarization Transfer Via a J-Ordered State for Signal Enhancement of Low-Sensitivity Nuclei. J Magn Reson 39(1):163-168.
    78. Morris GA & Freeman R (1979) Enhancement of Nuclear Magnetic-Resonance Signals by Polarization Transfer. Journal of the American Chemical Society 101(3):760-762.
    79. Roberts MF & Redfield AG (2003) 31P NMR field cycling as a tool to study biological phosphates. Biophys J 84(2):189a-189a.
    80. Sivanandam VN, Cai JF, Redfield AG, & Roberts MF (2009) Phosphatidylcholine "Wobble" in Vesicles Assessed by High-Resolution C-13 Field Cycling NMR Spectroscopy. J Am Chem Soc 131(10):3420-+.
    81. Chandrasekhar S (1943) Stochastic Problems in Physics and Astronomy. Reviews of Modern Physics 15(Copyright (C) 2008 The American Physical Society):1.
    82. Wang MC & Uhlenbeck GE (1945) On the Theory of the Brownian Motion II. Reviews of Modern Physics 17(Copyright (C) 2008 The American Physical Society):323.
    83. Berne BJ, Boon JP, & Rice SA (1966) On the Calculation of Autocorrelation Functions of Dynamical Variables. J Chem Phys 45(4).
    84. Berne BJ & Harp GD (1970) On the calculation of time correlation functions. Advance in Chemical Physics XVII.
    85. Roberts MF & Redfield AG (2004) High-resolution P-31 field cycling NMR as a probe of phospholipid dynamics. J Am Chem Soc 126(42):13765-13777.
    86. Roberts MF & Redfield AG (2004) Phospholipid bilayer surface configuration probed quantitatively by P-31 field-cycling NMR. P Natl Acad Sci USA 101(49):17066-17071.
    87. Roberts MF & Redfield AG (2005) Phospholipid bilayer surface configuration probed quantitatively by P-31 field-cycling NMR. Biophys J 88(1):239a-239a.

    無法下載圖示 本全文未授權公開
    QR CODE