簡易檢索 / 詳目顯示

研究生: 姚漢林
論文名稱: 錢卓南天深空觀測中不同類型活躍星系核受環境影響之研究
Environmental effects on different types of AGNs in Chandra Deep Field South
指導教授: 陳林文
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 活躍星系核星系團星系團合併
英文關鍵詞: AGN, galaxy cluster, cluster merger
論文種類: 學術論文
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們藉由研究宇宙間的大尺度結構(如星系團或星系團合併)與 Chandra Deep Field South(CDFS)觀測到的不同類型活躍星系核(AGN)之間的關聯,探討 AGN 的演化受到周圍環境影響的程度。在本研究中 AGN資料是由 CDFS 及 Extended-CDFS(E-CDFS)X射線源合併而來的,所有可分析的 AGN 共 889 筆;而可見光星系目錄是具有多波段觀測及光度紅移的 COMBO-17 觀測資料,在我們所分析的紅移範圍中(z = 0.2 ~ 1.2)共約有 11,500 筆。透過星系–AGN 二點交互相關函數分析、星系二維密度分析以及分析實際以 Friend-of-Friend(FoF)星系團尋找演算法找到的高密度星系區周圍 AGN 分佈,我們發現 Type 1 AGN 與高密度星系區的中心部分關聯性較強;且在這個區域 Type 1 AGN 與星系的比例,存在高於平均比例的趨勢。而關於 Type 2 AGN 大量出現在低紅移處的原因,應該也與高密度星系區有關。在不同的分析下,我們都看到 Type 2 AGN 與成團星系結構存在關聯性。另外,在距離高密度星系區中心 0.5 Mpc 之外圍區域,Type 2 AGN 出現的機率高於 Type 1 AGN,而且我們同樣也在高密度星系區周圍(~ 0.5 Mpc)看到 Type 2 AGN 與星系的比例具有高於平均比例之趨勢。這代表宇宙間可能存在許多尚未觀測到的大尺度結構(由較暗的星系組成),而大尺度結構內星系因為彼此的交互作用而產生大量的 Type 2 AGN。雖然在探討更大尺度的環境(如星系團合併)與 AGN 演化的關聯分析中,由於分析資料的限制,因此沒有具體的證據支持 AGN 的演化受更大尺度環境影響;但在星系團(群)尺度下,我們的結果顯示 AGN 的演化確實受到高密度星系區的影響。我們的結果可提供關於研究 AGN 的演化起源問題的參考,而未來更多深空的觀測也許可以提供我們檢視這些與 AGN 有關聯的大尺度結構之特質,以更進一步了解環境如何影響 AGN 演化的問題。

    We investigate the relation between cosmic structures and active galactic nuclei (AGNs) observed in Chandra Deep Field South (CDFS) to study how the evolution of galaxies was affected by environments (eg, galaxy clusters or cluster mergers). A total of 889 X-ray sources, compiled from CDFS and the Extended Chandra Deep Field South (E-CDFS) surveys, are analyzed in the study. An optical catalog of galaxies with multi-colour photometry in the same field is extracted from COMBO-17, which includes about 11,500 (MR≦-19.19) objects with photometric redshifts between 0.2 and 1.2. Using the cross-correlation functions ω(θ) of X-ray AGN and galaxies, 2D galaxies density distribution, and Friends-of-Friends (FoF) algorithm analyses, we note that Type 1 AGNs (with hardness ratio HR<-0.2) are spatially cross-correlated with the center of high number density of galaxies region (HNDoGR), and the Type 1 AGN to galaxy ratio in these regions tends to be higher than average. Moreover, our analyses also reveal a correlation between Type 2 AGNs (HR>-0.2) and galaxies structure; further analyses indicate the number of Type 2 AGNs is much larger than Type 1 AGNs on the outskirts of HNDoGR (~ 0.5 Mpc), and the Type 2 AGN to galaxy ratio around the HNDoGR (~ 0.5 Mpc ) tends to be higher than average. These results may infer that the large number of Type 2 AGNs appearing at low redshift could be associated with HNDoGRs, which are undetected large scale structures (LSS) composed of faint galaxies in the low-redshift universe, the interaction of galaxies in the outer part of the faint LSS can provide a mechanism to boost the formation of Type 2 AGNs. On the other hand, our analyses do not show obvious evidence that the evolution of AGNs is related to larger scale environment such as cluster mergers. With our results demonstrating the different correlations between Type 1/2 AGNs and HNDoGR, deeper observations in the future can offer more data to analyze the properties of faint LSS with AGNs embedded, and to provide new clues to the origins
    of the different types of AGNs.

    目錄 III 表列 V 圖目 VI 1 前言 1 1.1 活躍星系核 - 星系演化的一環 1 1.2 星系環境對星系演化的影響 1 1.3 以 HARD X-RAY 觀測 AGN 的必要性 2 2 X-RAY及可見光資料來源 7 2.1 X-RAY 資料 8 2.2 可見光資料 9 3 資料處理 11 3.1 COMBO-17 亮星汙染的排除 11 3.2 E-CDFS 光度紅移的推估 13 3.3 CDFS 與 E-CDFS 的統整 15 3.4 資料選擇 17 3.5 TYPE 1 AGN 與 TYPE 2 AGN 的分類 19 4 研究分析及結果討論 25 4.1 AGN 周圍的星系環境研究 25 4.1.1 星系-AGN 二點交互相關函數分析與結果討論 25 4.1.2 AGN 周圍星系二維分佈之密度分析與結果討論 34 4.2 高密度星系區的 AGN 分佈 41 4.2.1 高密度星系區之定義 41 4.2.2 高密度星系區與 AGN 之關聯分析與結果討論 45 4.2.3 高密度星系區交互作用對 AGN 之影響分析與結果討論 50 5 討論 55 5.1 AGN 的演化與高密度星系區之關聯 55 5.2 不同類型 AGN 與高密度星系區之關聯 57 5.3 AGN 的演化與交互作用中的高密度星系區之關聯 57 6 結論 61 7 參考文獻 63 A 附錄 67 A.1 交互相關函數擬合誤差分析 67 A.2 星系二維分佈之密度分析圖 71 A.3 高密度星系區資料 73

    Adami C., Mazure A., Ilbert1 O., Cappi A., Bottini D., Garilli B., Le Brun V., Le Fèvre O., Maccagni D., Picat J. P., Scaramella R., Scodeggio M., Tresse L., Vettolani G., Zanichelli A., Arnaboldi M., Arnouts S., Bardelli S., Bolzonella M., Charlot S., Ciliegi P., Contini T., Covone G., Foucaud S., Franzetti P., Gavignaud I., Guzzo L., Iovino A., Lauger S., McCracken H. J., Marano B., Marinoni C., Meneux1 B., Merighi R., Paltani S., Pellò R., Pollo A., Pozzetti L., Radovich M., Zamorani G., Zucca E., Bondi M., Bongiorno A., Busarello G., Gregorini L., Mathez G., Mellier Y., Merluzzi P., Ripepi V., and Rizzo D., 2005, A&A, 443, 805

    Alexander D. M., Bauer F. E., Brandt W. N., Schneider D. P., Hornschemeier A. E., Vignali C., Barger A. J., Broos P. S., Cowie L. L., Garmire G. P., Townsley L. K., Bautz M. W., Chartas G., and Sargent W. L. W., 2003, AJ, 126, 539

    Barger A. J., Cowie L. L., Capak P., Alexander D. M., Bauer F. E., Fernandez E.,Brandt W. N., Garmire G. P., and Hornschemeier A. E., 2003, AJ, 126, 632

    Bevington P. R., & Robinson D. K., 2002, Data Reduction and Error Analysis for the Physical Sciences
    Blandford R. D., Rees M. J., 1992, In testing the AGN Paradigm, ed. SS Holt, SG Neff, CM Urry, P. 3. New York: Am. Inst. Phys

    Botzler C. S., Snigula J., Bender R., Hopp U., 2004, MNRAS, 349, 425

    Cappi M., Mazzotta P., Elvis M., Burke D. J., Comastri A., Fiore F., Forman W., ruscione A., Green P., Harris D., Hooper E. J., Jones C., Kaastra J. S., Kellogg E., Murray S., Namara B., Nicastro F., Ponman T. J., Schlegel E. M., Siemiginowska A., Tananbaum H., Vikhlinin A., Virani S., Wilkes B., 2001, ApJ, 548, 624

    Croom S. M., Cowie L. L., Capak P., Alexander D. M., Bauer F. E., Fernandez E.,Brandt W. N., Garmire G. P., and Hornschemeier A. E., 2004, MNRAS, 349, 1397

    Dressler A., & Gunn J. R., 1983, ApJ, 207, 7
    Dressler A., Thompson I. B., Shectman S. A., 1985, ApJ, 288, 481

    Giacconi R., Zirm A., Wang J., Rosati P., Nonino M., Tozzi P., Gilli R., Mainieri V., Hasinger G., Kewley L., Bergeron J., Borgani S., Gilmozzi R., Grogin N., Koekemoer A., Schreier E., Zheng W., and Norman C., 2002, ApJS, 139, 369

    Gilli R., Salvati M., Hasinger G., 2001, ApJ, 366, 407
    Gilli R., Cimatti A., Daddi E., Hasinger G., Rosati P., Szokoly G., Tozzi P., Bergeron J., Borgani S., Giacconi R., Kewley L., Mainieri V., Mignoli M., Nonino M., Norman C., Wang J., Zamorani G., Zheng W., and Zirm A., 2003, AJ, 592, 721

    Hamilton A. J. S., 1993, ApJ, 417, 19

    Hernquist L., 1989, Nature, 340, 687

    Hewitt A. & Burbidge G., 1993, ApJS, 87, 451H

    Jeltema T., Canizares C. R., Bautz M. W., Buote D. A., 2005, ApJ, 624, 606

    Jones C., & Forman W., 1999, ApJ, 511, 65

    Kormendy J., & Richstone D., 1995, ARA&A, 33, 581

    Landy S. D., & Szalay A. S., 1993, ApJ, 412, 64

    Lehmer B. D., Brandt W. N., Alexander D. M., Bauer F. E., Schneider D. P., Tozzi P., Bergeron J., Garmire G. P., Giacconi R., Gilli R., Hasinger G., Hornschemeier A. E., Koekemoer A. M., Mainieri V., Miyaji T., Nonino M., Rosati P., Silverman J. D., Szokoly G., and Vignali C., 2005, ApJS, 161, 21

    Lynden-Bell D., 1969, Nature, 223, 690

    Lynden-Bell D., 1978, Phys. Scr, 17, 185

    Martini P., Kelson D. D., Kim E., Mulchaey J. S., Athey A. A., 2006, ApJ, 644,116

    Miller A., & Owen N., 2003, AJ, 125, 2427

    Moore B., Katz N., Lake G., Dressler A., Oemler A., 1996, Nature, 379, 613

    Peebles P. J. E., 1980, The Large-Scale Structure of the Universe, Princeton Univ. Press,Princeton

    Rosati P., Tozzi P., Giacconi R., Gilli R., Hasinger G., Kewley L., Mainieri V., Nonino M., Norman C., Szokoly G., Wang J. X., Zirm A., Bergeron J., Borani S., Gilmozzi R., Grogin N., Koekemoer A., Schreier E., and Zheng W., 2002, ApJ, 566, 667

    Ruderman J., & Ebeling H., 2005, ApJ, 623, L81
    Schuecker P., Böhringer H., Reiprich T. H., Feretti L., 2001, A&A, 378, 408

    Serber W., Bahcall N., Ménard B., Richards G., 2006, ApJ, 643, 68

    Setti G., & Woltjer L., 1989, A&A, 224, 21

    Steffen A. T., Strateva I., Brandt W. N., Alexander D. M., Koekemoer A. M., Lehmer B. D., Schneider D. P., Vignali C., 2006, AJ, 131, 2826

    Szokoly G. P., Bergeron J., Hasinger G., Lehmann I., Kewley L., Mainieri V., Nonino M., Rosati P., Giacconi R., Gilli R., Gilmozzi R., Norman C., Romaniello M., Schreier E., Tozzi P., Wang J. X., Zheng W., and Zirm A., 2004, ApJS, 155, 271

    Trevese D., Castellano M., Fontana A., Giallongo E., 2007, A&A, 463, 853

    Wake D. A., Miller C. J., Matteo T. D., Nichol R. C., Pope A., Szalay A. S., Gray A., Schneider D. P., and York D. G., 2004, AJ, 610, L85

    Waskett, T. J., Eales S. A., Gear W. K., McCracken H. J., Lilly S.and Brodwin M., 2005, MNRAS, 363, 801

    Wolf C., Meisenheimer K., Kleinheinrich M., Borch A., Dye S., Gray M., Wisotzki L., Bell E. F., Rix H. W., Cimatti A., Hasinger G., Szokoly G., 2004, A&A, 421, 913

    Zheng W., Mikles V. J., Mainieri V., Hasinger G., Rosati P., Wolf C., Norman C.,Szokoly G., Gilli R., Tozzi P., Wang J. X., Zirm A., and Giacconi R.,2004, ApJS, 155, 73

    下載圖示
    QR CODE