研究生: |
林昱辰 Lin Yu Chen |
---|---|
論文名稱: |
含各式4-羥基脯胺酸配位基之鎳錯合物合成及反應性探討與含鎳超氧化物歧化酶活性中心模擬之研究 Synthesis and Reactivity of Nickel Complexes with various 4-Hydroxy-L-Prolinol Ligands Relevant to the Active Site of Nickel Superoxide Dismutase |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 139 |
中文關鍵詞: | 含鎳超氧化物歧化酶 、正三價鎳錯合物 、半抑制濃度 |
英文關鍵詞: | NiSOD, Ni(III) complex, half maximal inhibitory concentration |
論文種類: | 學術論文 |
相關次數: | 點閱:106 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來有研究從土壤鏈黴菌及海生藍綠藻中發現含鎳超氧化物歧化酶(NiSOD),此酵素催化超氧離子的歧化反應生成過氧化氫及氧氣,藉此避免生物細胞因氧化壓力受到損壞。為了模擬NiSOD活性中心的反應性,本研究設計並合成一系列五牙配位基BMPORP (R = H, TMS, TPS)和H2BDPPOH,分別與[Ni(CH3CN)6](ClO4)2反應後,形成正二價鎳錯合物[Ni(BMPOHP)CH3CN](ClO4)2 (1)、 [Ni(BMPOTMSP)- (CH3CN)](ClO4)2 (2)、[Ni(BMPOTPSP)(CH3CN)](ClO4)2 (3) 和 Ni(BDPPOH) (4),並利用紫外可見光光譜、循環伏安法以及X光繞射解析鑑定。從循環伏安法得知,以Ag/Ag+做參考電位,發現錯合物1、2和3分別在-1.01, -1.04 and -1.09 V有不可逆的還原峰,表示[NiII(BMPORP)CH3CN](ClO4)2系列的錯合物無法形成穩定的正三價鎳錯合物。而錯合物4在0.52 V的位置有可逆的氧化還原峰,與氧化劑[CP2Fe]PF6反應後,生成正三價的鎳錯合物[NiIII(BDPPOH)]PF6(5),並可利用紫外可見光光譜、循環伏安法以及電子順磁共振光譜鑑定錯合物5的特性。錯合物5可氧化KO2產生O2,本身還原成錯合物4。在超氧化物歧化酶活性測試中,可以得到錯合物5的半抑制濃度為1.8 × 10-4 M,表示錯合物5具有NiSOD的活性。
Nickel-containing superoxide dismutase (NiSOD) has been found in the Streptomyces species, and marine cyanobacteria in recent years. NiSOD can catalyze the disproportionation of the superoxide anion into hydrogen peroxide and dioxygen avoiding cell damage from oxidative stress. In order to mimic the active site of NiSOD, various pentadentate lignads, BMPORP (R = H, TMS, TPS) and H2BDPPOH, were designed and prepared. As these ligands reacted with [Ni(CH3CN)6](ClO4)2, four complexes, [Ni(BMPOHP)(CH3CN)](ClO4)2 (1), [Ni(BMPOTMSP)- (CH3CN)](ClO4)2 (2), [Ni(BMPOTPSP)(CH3CN)](ClO4)2 (3) and Ni(BDPPOH) (4) were formed. Complexes 1, 2, 3 and 4 were characterized by UV/vis spectroscopy, cyclic voltammetry (CV) and X-ray crystallograph. CV measurements for complex 1, 2 and 3 displayed an irreversible reduction in MeCN at -1.01, -1.04 and -1.09 V vs Ag/Ag+, respectively. It shows that [NiII(BMPORP)CH3CN](ClO4)2 cannot be oxidized to NiIII complexes. However, CV measurements of complex 4 displayed a reversible event centered at 0.52 V vs Ag/Ag+ suggesting that complex 4 could be oxidized by [CP2Fe]PF6. The NiIII complex, [Ni(BDPPOH)]PF6 (5), characterized by UV/vis spectroscopy, CV and EPR, was synthesized by oxidation of complex 4. Complex 5 could oxidize KO2 to form O2 gas and itself was reduced to complex 4. The superoxide dismutase activity, half maximal inhibitory concentration (IC50) for dismutasing superoxide anion, of complex 5 was 1.8 × 10-4 M. The IC50 reveals complex 5 possessing SOD activity.
1. Loeffler Petrides Heinrich. Biochemie & Pathobiochemie, 8th Edi- tion. 2007: 123.
2. Karunakaran Chandran; John McCracken; Francis C. Peterson; William E. Antholine; Brian F. Volkman; Balaraman Kalyanaraman. Biochemistry 2010, 49, 10616.
3. Stephejn. Lippar. Acc. Chem. Res. 1982, 15, 318.
4. Kuo, C. F. ; Fridovich, I. Biochem. J. 1986, 237, 505.
5. Patrick S. Quint; John F. Domsic; Diane E. Cabelli; Robert McKenna; David N. Silverman. Biochemistry 2008, 47, 4621.
6. Yue Guan; Michael J. Hickey; Gloria E. O. Borgstahl; Robert A. Hallewell; James R. Lepock; Don O’Connor; Yunsheng Hsieh; Harry S. Nick; David N. Silverman; John A. Tainer. Biochemistry 1998, 37, 4722.
7. Anne-Frances Miller. Acc. Chem. Res. 2008, 41,501.
8. Anne-Frances Miller; David L. Sorkin; K. Padmakumar. Biochemistry 2005, 44, 5969.
9. Yanjie Li; Deborah B. Zamble. Chem. Rev. 2009, 109, 4617.
10. David P. Barondeau; Carey J. Kassmann; Cami K. Bruns; John A. Tainer; Elizabeth D. Getzoff. Biochemistry 2004, 43, 8038.
11. Adam T. Fiedler; Peter A. Bryngelson; Michael J. Maroney; Thomas C. Brunold. J. Am. Chem. Soc. 2005, 127, 5449.
12. Joseph A. Hriljac; Duward F. Shriver. Inorg. Chem. 1987, 26, 3645-.
13. Jan Hanss; Hans-Jörg Krüger. Angew. Chem. Int. Ed. 1998, 37, No. 3.
14. Vaidyanathan Mathrubootham; Jason Thomas; Richard Staples; John McCraken; Jason Shearer; Eric L. Hegg. Inorg. Chem. 2010, 49, 5393.
15. Huaibo Ma; Swarup Chattopadhyay; Jeffrey L. Petersen; Michael P. Jensen. Inorg. Chem. 2008, 47, 7966.
16. Gale, E. M.; Simmonett, A. C.; Telser, J.; Schaefer, H. F.III.; Harrop, T. C. Inorg. Chem. 2011, 50, 9216.
17. Jan Hanss; Hans-Jörg Krüger. Angew. Chem. Int. Ed. 1998, 37, No. 3
18. Marcello Gennari; Maylis Orio; Jacques P_ecaut; Frank Neese; Marie-Noelle Collomb; Carole Duboc. Inorg. Chem. 2010, 49, 6399.
19. Roxanne M. Jenkins; Michael L. Singleton; Elky Almaraz; Joseph H. Reibenspies; Marcetta Y. Darensbourg. Inorg. Chem. 2009, 48, 7280.
20. Krause, M. E.; Glass, A. M.; Jackson, T. A.; Laurence, J. S. Inorg. Chem. 2010, 49, 362.
21. Shearer, J.; Long, L. M. Inorg. Chem. 2006, 45, 2358.
22. Pierre, J. L.;Chautemps, P.; Refaif, S.; Beguin, C.; El Mazouki, A,; Serratrice, G.; Saint-Aman, E.; Rey, P. J. Am. Chem. Soc. 1995, 117, 1965.
23. 江建緯,國立臺灣師範大學博士論文,2012
24. Herbst, R. W.; Guce, A.; Bryngelson, P. A.; Higgins, K. A.; Ryan, K. C.; Cebelli, D. E.; Garman, S. C.; Maroney, M. J. biochemistry 2009, 48, 3354.