簡易檢索 / 詳目顯示

研究生: 吳家進
Chia-Chin Wu
論文名稱: 玉山水苦賈及其相關類群之系統分類-特別論及玉山水苦賈的族群遺傳
The systematic study of Veronica morrisonicola and allied species with special reference to the population genetics of Veronica morrisonicola
指導教授: 王震哲
Wang, Jenn-Che
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 82
中文關鍵詞: 玉山水苦賈系統分類族群遺傳
英文關鍵詞: Veronica morrisonicola, systematic study, population genetics
論文種類: 學術論文
相關次數: 點閱:197下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 玉山水苦賈及其相關類群包含三個在形態上相似的類群,分別為玉山水苦賈(Veronica morrisonicola)、雪山水苦賈(V. tsugitakensis)和玉山前山水苦賈(V. morrisonicola var. yushanchienshanica)。三者皆分佈於高海拔,其中玉山水苦賈分佈最廣,雪山水苦賈的分佈地點侷限在雪山圈谷,而玉山前山水苦賈的分佈地點侷限在玉山前山。本研究利用形質分析和分子資料探討此類群的系統分類問題,特別論及玉山水苦賈的族群遺傳研究。
    本研究利用167個樣本進行形質分析,共測量12個形態特徵。根據ANOVA結果顯示,此三類群在7個外部形態特徵具有顯著差異(葉片長度、葉片寬度、節間長度、總花梗長度、花序長度、花梗長度和果實數量),在歸群分析及PCA分析中可將此三群區分,但仍具有一些中間型的個體,另外玉山水苦賈分佈於合歡山的樣本形態差異較大。由葉綠體DNA所建構的親緣關係顯示,此三類群並非最近緣物種,雪山水苦賈的親緣關係較為疏遠。推估其分歧時間此三類群約為1.36百萬年,玉山水苦賈和玉山前山水苦賈的分歧時間約為0.25百萬年,另外分佈於合歡山的玉山水苦賈雖在形態上差異較大,但分子資料並無差異。
    玉山水苦賈的族群遺傳研究,共使用了142~147個樣本數,合併葉綠體trnL intron和trnL-trnF spacer、核DNA的ITS區域與葉綠體trnD-trnT中的重複片段進行分析。由核DNA結果顯示,基因型歧異度以桃山族群和合歡山族群為最高。檢視基因型關連圖,玉山水苦賈的基因型可分成A、B兩群,其中A群占68%,B群占18.5%。檢視其族群變動歷史顯示,玉山水苦賈的族群數量在A群具有成長趨勢,B群則呈現一個穩定不變的狀態。在族群分化指數中,玉山水苦賈各族群並無顯著分化,由AMOVA檢測呈現族群的變異均在族群內。
    由形質分析和分子資料結果,本研究將Huang and Huang (1998)認定的玉山水苦賈處理為玉山水苦賈(V. morrisonicola)、玉山前山水苦賈(V. morrisonicola var. yushanchienshanica) 和雪山水苦賈(V. tsugitakensis Masamune)。

    Veronica morrisonicola and allied species contains three morphologically similar taxa, namely V. morrisonicola, V. morrisonicola var. yushanchienshanica, V. tsugitakensis. They are distributed in high elevation (2500-3900 m). V. morrisonicola is the widest distribution species. V. tsugitakensis is limited in Hseuhshan. V. morrisonicola var. yushanchienshanica is limited in Yushanchienshan. The present study investigates the systematic of them by using morphological and molecular data special reference to the population genetics of V. morrisonicola.
    In morphometric analysis, total of 167 samples and 12 characters were measured. The results of ANOVA show the seven characters are significantly different between the three taxa. PCA analysis and cluster analysis show that trend to separate into three groups. But in V. morrisonicola there is more variety in population of Hohuanshan. Based on the chloroplast DNA, V. tsugitakensis is most distant from other groups. The study estimate divergent time of the three groups in 1.36 Mya and V. morrisonicola and V. morrisonicola var. yushanchienshanica in 0.25 Mya.
    Population structure analysis of V. morrisonicola were used 142-147 samples. Two chloroplast DNA region (trnL intron and trnL-trnF spacer), nuclear DNA region (ITS) and chloroplast tandem repeat region (trnD-trnT) were used in molecular anlysis. Based on nuclear DNA results, haplotype diversity in population of Taoshan and Hohuanshan are more than others. Based on minimum spaning network, there are two major groups of haplotype in V. morrisonicola. There are 68% in group A and 18.5% im group B. Based on bayesian skyline results indicated that group A was expansion but in group B.
    According morphometric and molecular data, the present study treat V. morrisonicola, V. morrisonicola var. yushanchienshanica, V. tsugitakensis.

    壹、前言………………………………………………………………………………1 一、玉山水苦賈及其相關類群的基本資料………………………………………1 二、研究背景……………………………………………………………………3 三、研究問題…………………………………………………………...……….6 貳、研究材料與方法 (一) 研究材料………………………………………………………………….7 (二) 研究方法……………………………………………………………………8 參、結果……………………………………………………………………………. 19 (一) 玉山水苦賈及其相關類群形質分析及親緣關係……………………13 (二) 分類處理…………………………………………………………………17 (三) 玉山水苦賈之族群遺傳探討…………………………………………17 肆、討論………………………………………………………………………………23 (一) 玉山水苦賈及其相關類群形態比較及親緣關係探討…………………23 (二) 玉山水苦賈形態變異探討………………………………………………25 (三) 玉山水苦賈族群遺傳探討…………………………………………26 伍、結論………………………………………………………………………………29 陸、參考文獻………………………………………………………………………..30 附表目次 表一、玉山水苦賈及其相關類群學名沿革表………………………………………36 表二、玉山水苦賈及其相關類群形態差異比較表…………………………………37 表三、玉山水苦賈形質測量的樣本數量及其採集地點……………………………38 表四、玉山水苦賈分子資料的族群代號及數量……………………………………39 表五、NCBI資料庫中所選用DNA序列的物種編號和名稱………………………40 表六、各序列片段反應條件…………………………………………………………41 表七、PCR反應試藥成分表………………………………………………………42 表八、玉山水苦賈及其相關類群之ANOVA檢測和HSD test…………………….43 表九、玉山水苦賈及其相關類群形態特徵測量平均值比較表……………………45 表十、主成分分析各變數的特徵向量及各軸累積可解釋的變異量………………46 表十一、玉山水苦賈及其相關類群利用核DNA的基因多樣性檢測……………47 表十二A、玉山水苦賈及其相關類群trnL intron片段基因型變異位點組成……48 表十二B、玉山水苦賈及其相關類群trnL-trnF片段基因型變異位點組成………48 表十三、玉山水苦賈ITS片段基因型變異位點組成………………………………49 表十四、玉山水苦賈各族群ITS片段的基因型分佈情況…………………………51 表十五、玉山水苦賈及其相關類群利用葉綠體DNA的基因多樣性檢測………53 表十六、玉山水苦賈各族核DNA的遺傳檢測………………………………54 表十七、葉綠體DNA估算玉山水苦賈各族群之間的族群分化指數(FST)和基因交 流值(Nm)………………………………………………………………..55 表十八、以葉綠體DNA估算玉山水苦賈三大地理區的分化指數(FST)和基因交流 值(Nm)………………………………………………………………55 表十九、核DNA估算玉山水苦賈各族群之間的族群分化指數(FST)和基因交 流值(Nm)………………………………………………………………..56 表二十、以核DNA估算玉山水苦賈三大地理區的分化指數(FST)和基因交流 值(Nm)………………………………………………………………56 表二十一、玉山水苦賈葉綠體DNA的AMOVA檢測表…………………………57 表二十二、玉山水苦賈核DNA的AMOVA檢測表………………………………57 表二十三、玉山水苦賈各族群的葉綠體trnD-trnT片段中重複序列片段的基因型 分佈情況……………………………………………………………………58 表二十四、以葉綠體trnD-trnT片段中重複序列片段估算各族群之間的族群分化指數(FST) ……………………………………………………………………60 表二十五、以葉綠體trnD-trnT片段中重複序列片段估算三大地理區的分化指數(FST)…………………………………………………………………………..60 表二十六、前人研究中所使用的葉綠體DNA核苷酸歧異度比較………………60 附圖目次 圖一、A~L 玉山水苦賈及其相關類群形態特徵測量圖…………………………61 圖二、玉山水苦賈及其相關類群形質分析之主成分分析座標圖…………………65 圖三、玉山水苦賈及其相關類群形質分析之歸群樹分析圖………………………66 圖四、利用葉綠體片段所建構的玉山水苦賈及其相關類群的NJ tree……………67 圖五、利用葉綠體片段所建構的玉山水苦賈及其相關類群的MP tree…………69 圖六、利用葉綠體片段所建構的玉山水苦賈及其相關類群在不同族群中的基因型NJ tree………………………………………………………………………71 圖七、利用葉綠體片段所建構的玉山水苦賈及其相關類群在不同族群中的基因型MP tree………………………………………………………………………72 圖八、玉山水苦賈ITS片段在各族群的基因型分佈圖……………………………73 圖九、玉山水苦賈各族群的葉綠體DNA片段之族群遺傳檢測圖………………74 圖十、玉山水苦賈三大地理區及總樣本數的葉綠體DNA片段之族群遺傳檢測圖……………………………………………………………………………75 圖十一、玉山水苦賈各族群的核DNA片段之族群遺傳檢測圖…………………76 圖十二、玉山水苦賈三大地理區及總樣本數的核DNA片段之族群遺傳檢測圖..77 圖十三、玉山水苦賈的基因型網狀親緣關連圖……………………………………78 圖十四 A ~ C、玉山水苦賈核DNA所有樣本所建構的Bayesian Skyline圖……79 圖十五 A ~ C、玉山水苦賈核DNA,A群所建構的Bayesian Skyline圖…..80 圖十六 A ~ C、玉山水苦賈核DNA,B群所建構的Bayesian Skyline圖…………81 圖十七、玉山水苦賈葉綠體trnD-trnT片段中重複序列片段在各族群的分佈圖..82

    王唯匡 2002 台灣特有水生植物大安水蓑衣的族群分化與親緣地理學探討立
    。成功大學生物學研究所。碩士論文。
    江友中 2002 八丈芒分子地理親緣研究。國立台灣師範大學生命科學系。博士論文。
    余惠如 2008 喜岩菫菜複合群之親緣關係與分類研究。國立台灣師範大學生命科學系。碩士論文。
    吳瑞娥 2001 東亞地區之昆欄樹及其相關類群進行的親緣關係研究。國立台灣師範大學生命科學系。博士論文。
    吳家進 2005 台灣產婆婆納族之分類研究。國立中興大學生命科學系。學士論文。
    林瓊玲 2001 香杉與杉木葉綠體DNA基因譜係分析。中國文化大學生物科技研究所。碩士論文。
    林雅芳 2006 以形態及分子證據探討玉山蠅子草種複合群的分類問題。國立台灣師範大學生命科學系。碩士論文。
    陳燕珍 2000 東亞地區水筆仔族群的遺傳變異研究。國立台灣師範大學生命科學系。碩士論文。
    陳致仁 2003 玉山箭竹親緣地理學之研究。國立台灣師範大學生命科學系。碩士論文。
    陳怡雁 2004 鈴木草屬(唇形科)台灣及琉球特有屬之親緣地理學研究。國立成功大學生物學研究所。碩士論文。
    黃淑芬 2002 青剛櫟葉綠體DNA變異的空間分佈模式。國立台灣大學植物學研究所。碩士論文
    韓中梅 2001 包籜矢竹族群遺傳變異之研究。國立台灣師範大學生命科學系。碩士論文。
    曾柏彰 2006 台灣產附地草屬之親緣關係與分類研究。國立台灣師範大學生命科學系。碩士論文。
    謝長富 2002 臺灣維管束植物的物種多樣性。 2002年生物多樣性保育研討會論文集: 15-30。 行政院農業委員會特有生物研究保育中心。
    Albach, D. C., H. M. Meudt, and B. Oxelman. 2005. Piecing together the 'new' Plantaginaceae. Am. J. Bot. 97 (2): 297-315.
    Albach, D. C., C. Schonswetter and A. Trubsch 2006. Comparative phylogeography of the Veronica alpine complex in Europe and North America. Mol. Ecol. 15: 3269–3286.
    Alonso, R., C. Lence, M. J. Lopenz, E. Puente and A. Penas. 2003. A new species of Veronica L. (Scrophulariaceae) in the Cantabrian range (Spain). Bot. J. Linn. Soc. 141: 119-124.
    Avise, J. C., J. Arnold and R. M. Ball. 1987. Intraspecific phylogeography: the miotchondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 18: 489-522.
    Avise, J. C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York.
    Beerli, P. 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22: 341-345.
    Cruzan, M. B. amd A. R. Templeton. 2000. Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends. Ecol. Evol 15: 491-496.
    Cheng, Y. P., S. Y. Hwang,W. L. Chiou, and T. P. Lin. 2006. Allozyme variation of populations of Castanopsis carlesii (Fagaceae) corroborating diversity centers and potential divergence areas in Taiwan. Ann. Bot. 98: 601–608.
    Dumolin-Lapegue, S., B. Demesure, S. Fineschi, V. L. Corre, and R. J. Petit. 1997. Phylogeographic structure of the white oaks throughout the European continent. Genetics. 146: 1475-1487.
    Drummond, A. J. and A. Rambaut 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214.
    Excoffier, L., G. Laval, and S. Schmeider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinf. Online 1: 47-50.
    Fernandez, C. C., J. R. Shevock, A. N. Glazer and J. N. Thompson. 2006. Cryptic species within the cosmopolitan desiccation-tolerant moss Grimmia laevigata. Proc. Natl. Acad. Sci. USA.103: 637-642.
    Grand, W. S. and B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from the sardines and anchovies and lessons for conservation. J. Hered. 89: 415-426.
    Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
    Hennig, W. 1965. Phylogenetic systematics. Ann. Rev. Entomol. 10: 97-116.
    Huang, S. F. and T. C. Huang, 1998. Veronica, pp.631-642, Flora of Taiwan Ⅳ.Epoch Pub. Co. Taipei.
    Huang, S. F. and T. C. Huang. 1994. Notes on the flora of Taiwan (15)-the Veronica L. (Scrophulariaceae). Taiwania. 38: 5-17.
    Hayata, 1908. Flora Montana Formose. Journ. Coll. Sci. Univ. Tokyo 25 :174. pl. 29.
    Kimura, M. 1980. A sample method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16: 111-120.
    Kimura, M. 1983. Rare variant alleles in the light of neutral theory. Mol. Biol. Evol. 1: 84-93.
    Kumar, P. S., K. Tamura and M. Nei. 2004. MEGA3: Molecular Evolutionary Genetics Analysis Software, Bioinformatics.
    Li, H. L. 1950. studies in the Scrophulariaceae of Taiwan. Quart. Taiwan Mus. 3: 50-81.
    Lin, T. P. 2001. Allozyme variation of Michelia formosana (Kanehira) Masamine (Magnoliaceae), and inference of the glacial regugium in Taiwan. Theor. Appl. Genet. 102: 450-457.
    Magri, D., S. Fineschi, R. Bellarosa, A. Buonamici, F. Sebastiani, B. Schirone, M. C. Simeone and G. G. Vendramin. 2007. The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol. Ecol. 16: 5259-5266.
    Marhold, K., J. Lihva, M. Perny, R. Grupe, and B. Neuffer. 2002. Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. Biol. J. Linn. Soc. 139: 275-294.
    Masamune, 1933. Contribution to our knowledge of the flora of the southern part of Japan Ⅳ. Soc. Trop. Agr. 3: 21.
    Ohwi, 1934. Plantse novae Japonicae. Rep. Sp. Nov. 36: 55.
    Otieno, D. F., K. Balkwill and A. J. Paton. 2006. A multivariate analysis of morphological variation in the Hemizygia bracteosa complex (Lamiaceae, Ocimeae). Pl. Syst. Evol. 261: 19-38.
    Planes, S., P. J. Doherty. 1997. Genetic and color interaction at a contact zone of Acanthochromis polyacanthus: a marine fish lacking pelagic larvae. Evolution. 51: 1232-1243.
    Peng, C. I., C. M. Kuo and Y. P. Yang. 1994. Botanical diversity and inventory of Taiwan Pp. 75–85 in: Peng, C. I. & Chou, C. H. (eds.), Biodiversity and Terrestrial Ecosystems.Institute of Botany, Academia Sinica Monograph Ser. 14, Taipei.
    Provan, J., N. Soranzo, N. J. Wilson, D. B. Goldstein and W. Powell. 1999. A low mutation rate for chloroplast microsatellites. Genetics. 153: 943-947.
    Rogers, A. R. 1995. Genetic evidence for a Pleistocene population explosion. Evolution. 49: 608-615.
    Rogers, A. R. and H. C. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552-569.
    Rousst, F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106.
    Rowe, K. C., E. J. Heske, P. W. Brown and K. N. Paige. 2004. Surviving the ice: Northern refugia and postglacial colonization. Proc. Natl. Acad. Sci. vol. 101 28: 10355-10359.
    Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
    Schaaln, B. A. 1980. Measurement of gene flow in Lupinus texensis. Nature. 284: 450-451.
    Shall, J., A. Lehman and L. Creighton. 2001. JMP Start Statistics. Pacific Grove CA: Duxbury Press.
    Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schiling, & R. L. Small. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92: 142–166.
    Shaw, J., E. B. Lickey, E. E. Schilling., R. L. Small. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ. Am. J. Bot. 94(3): 275-288.
    Slatkin, M. 1987. Gene flow and the geographic structure of natural population. Science. 236: 787-792.
    Sue, Y. S., K. Fang and S. Huang. 2000. Patterns of genetic variation of Alnus formosana in Taiwan. Taiwania. 45:95-106.
    Swofford, D. L. 1998. PAUP*. Phylogenetic analysis using parsimony. Version 4.0.
    Sinauer, Sunderland, Mass. Computer software.
    Taberlet, P., Gielly, G. Pautou, and J. Bouvet. 1991 Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Mol. Boil. 17: 1105-1109.
    Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123: 585-595.
    Tamura, K., Dudley J., Nei M. and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599
    Tsoong, P. C. and D. Y. Hong. 1979. Veronica. In Tsoong, P. C. and H. P. Yang (eds.), Flora Reipulblicae Popularis Sinicae. Science Press, Peiking. Vol.67 (2). pp. 252-325.
    Tsukada, M. 1966 Late Pleistocene vegetation and climate in Taiwan (Formosa). Proc. Natl. Acad. Sci. 55: 543-548.
    White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. D. Innis et al. (eds.), PCR protocols: A guide to methods and applications. pp. 315-322. San Diego, Academic Press.
    Wolfe, K. H., W. H. Li and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNA. Proc. Natl. Acad. Sci. USA 84: 9054-9058.
    Wu, J. E., S. Huang, J. C. Wang and W. F. Tong. 2001. Allozyme variation and population genetic structure in Trochodendron aralioides. J. Plant Res. 114: 45-57.
    Yamazaki, T. 1957. Taxonomical and phylogenetic studies of Scrophulariaceae -Veronicae with special reference Veronica and Veronicastrum in Eastern Asia. J. Fac. Sci. Univ. Tokyo Sect.Ⅲ. 7(2): 91-162.
    Ying, S. S. 1989(a). Miscellaneous notes on the flora of Taiwan (XII). Mem. Coll. Agr., NTU 29(1): 78, Pl. 2.
    Ying, S. S. 1989(b). Miscellaneous notes on the flora of Taiwan (XII). Mem. Coll. Agr., NTU 29(2): 60, Pl. 7.
    Zwettler, D., C. P. Vieira, and C. Schlötterer. 2002. Polymorphic microsatellites in Antirrhinum (Scrophulariaceae), a genus with low levels of nuclear sequence variability. J. Hered. 93: 217-221.

    下載圖示
    QR CODE