簡易檢索 / 詳目顯示

研究生: 賴威霖
Lai, Wei-Lin
論文名稱: 超快雷射與轉印製程於金屬結構層之親疏水性影響探討
Effect of Ultra-Fast Laser and Imprint Technique on Metal Structural Hydrophobic and Hydrophilic Surfaces
指導教授: 張天立
Chang, Tien-Li
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 疏水性親水性超快雷射轉印鋁合金銅合金
英文關鍵詞: Hydrophobic, Hydrophilic, Ultrafast laser, Imprint process, Aluminum alloy, Copper alloy
DOI URL: http://doi.org/10.6345/NTNU202000194
論文種類: 學術論文
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁合金(5052)與銅合金(C2800)在工業上用途極廣,具有質量輕且導電性、導熱性良好的優點,是具應用潛能之合金材料,透過製程的加工處理,將可改變鋁、銅合金表面結構與元素組成比例,產生親或疏水性表面(Hydrophobic/Hydrophilic surface),達到提升疏水性(自潔)或親水性(提升附著力)之目的及應用。在製程方面,本研究提出兩種製程方法,分別為超快雷射(Ultrafast laser)以及轉印(Imprint)製程,以此兩種製程方法,分別於鋁、銅合金表面,製備出具功能機制之微米級陣列溝槽結構,並以雷射共軛焦顯微鏡(Confocal laser scanning microscope, CLSM)及熱場發掃描式電子顯微鏡(Thermal field emission scanning electron microscope, FE-SEM)檢驗結構寬度、深度是否有達到設計的尺度需求,以及是否具有完整性與一致性。待鋁、銅合金檢驗完成後,將試片進行紀錄 1至30天的接觸角變化研究,以探討時間、間距和製程等實驗變因,對於相異合金材質(鋁及銅合金)之接觸角影響性。同時,本研究透過能量色散X射線譜(Energy-Dispersive X-ray spectroscopy, EDS)與X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)進行材料分析,探討氧(Oxygen)與碳(Carbon)之比值的變化與液珠接觸角變化的關聯性,進而了解上述各項變因的影響性,以有助於將來在各種親或疏水化材料產品於生醫及能源之應用。

    Aluminum alloy (aluminum 5052) and copper alloy (brass C2800) can be used for a wide range of industrial applications, such as light weight, good electrical conductivity and good thermal conductivity. Through the process and microarray structures, the surface characteristic of the aluminum 5052 and brass C2800 can be modified to achieve hydrophobic (self-cleaning) or hydrophilic (increase in heat-dissipation capability) purposes and applications. In terms of process, this study proposes two process methods, namely ultrafast laser and imprint process, which are used to fabricate a functional mechanism on the surface of aluminum 5052 and brass C2800 with the microarray trench structures. And then, the width and depth of structures can be measured by the confocal laser scanning microscope (CLSM) and thermal field emission scanning electron microscope (FE-SEM), which can be affected on the wetting mechanism of structure surfaces. To investigate the influence of time, spacing and process on the structure surfaces of aluminum 5052 and brass C2800, the change of the wetting on the them during the period of 1 to 30 days can be investigated. At the same time, this study material properties in the ratio of oxygen to carbon for the relationship between contact angle and substrate surface were investigated by measuring the energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), so as to understand the influence of the experimental variables. Furthermore, this study can be useful to hydrophobic and hydrophilic products with the various materials in biomedicine and energy in the future.

    摘要 i Abstract ii 致謝 ii 總目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 接觸角簡介 1 1.3.1 雷射原理與移除機制 2 1.3.2 長脈衝與短脈衝雷射 3 1.4.1 塑性加工之製程 4 1.4.2 塑性加工之降伏應力 5 第二章 文獻回顧 11 2.1.1 CO2雷射製程 11 2.1.2 YAG雷射製程 11 2.1.3 超快雷射製程 12 2.2 雷射脈衝之熱影響 13 2.3.1 接觸角理論Young's quation 14 2.3.2 接觸角理論Wenzel's theory 14 2.3.3 接觸角理論Cassie's theory 15 2.4 表面化學自由能對親疏水性的影響 16 第三章 研究方法與設備 21 3.1 實驗設計 21 3.2 製程試片製備 22 3.3.1 試片微溝槽結構加工 22 3.3.2 雷射加工剝離閥值 23 3.3.3 雷射加工之重疊率與脈衝數 24 3.4 碳/氧百分比之表面化學能 25 3.5 轉印模具有限元素分析 25 3.6 實驗與量測設備 26 第四章 研究結果與討論 38 4.1.1 不鏽鋼轉印模具雷射參數實驗 38 4.1.2 鋁合金與銅合金試片雷射參數實驗 38 4.2 鋁合金與銅合金轉印深度實驗 39 4.3 轉印模具有限元素模擬分析 40 4.4 雷射加工重疊率分析 40 4.5.1 雷射製程與間距於鋁合金接觸角分析 41 4.5.2 轉印製程與間距於鋁合金接觸角分析 42 4.6.1 雷射製程與間距於銅合金接觸角分析 43 4.6.2 轉印製程與間距於銅合金接觸角分析 44 4.7.1 EDS於鋁合金分析 44 4.7.2 EDS於銅合金分析 45 4.8.1 XPS於鋁合金分析 46 4.8.2 XPS於銅合金分析 47 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 79 參考文獻 80 作者簡歷 85

    [1] D. S. Patela, “Topographical effects of laser surface texturing on various time-dependent wetting regimes in Ti6Al4V”, Surface and Coatings Technology, 349, 816-829 (2018)
    [2] S. Divin-Mariotti, “Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability,” Applied Surface Science, 479, 344-350 (2019)
    [3] B. H. Luo, P. W. Shum, Z. F. Zhou, “Preparation of hydrophobic surface on steel by pattering using laser ablation process”, Surface and Coatings Technology, 204, 1180-1185 (2010)
    [4] W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces” , Planta, 1-8 (1997)
    [5] H. Notsu, W. Kubo, “Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography”, Materials Chemistry, 1523-1527 (2005)
    [6] C. Howell, A. Grinthal, S. Sunny, M. Aizenberg, J. Aizenberg, “Designing liquid‐infused surfaces for medical applications: A Review”, Advanced Materials, 30, 1802724 (2018)
    [7] 張傑富,利用奈秒脈衝式雷射與奈米線微細成型電阻抗晶片於生醫檢測之研究,國立臺灣師範大學機電工程學系碩士論文 (2015)
    [8] W. R. Rapoport , Chandra P. Khattak, “Titanium sapphire laser characteristics” , Applied Optics, 27, 2677-2684 (1988)
    [9] M. Malinauskas, A. Žukauskas,"Ultrafast laser processing of materials: from science to industry", Science and Applications, 5, 16133 (2016)
    [10] K Sugioka, “Progress in ultrafast laser processing and future prospects”, Nanophotonics, 6, 1-50 (2016)
    [11] Gia Petriashvili, Mauro D. L. Bruno, Maria P. De Santo, Erica Fuoco,Riccardo Barberi, “Acid mediated tunability of stimulated laser emission from dye doped chiral microdroplets”, Molecular Crystals and Liquid Crystals, 82-88 (2019)
    [12] G. H. Petti, R. Sauerbrey, “Pulsed ultraviolet laser ablation”, Applied Physics, 51-56 (1993)
    [13] Miteva M, Peev S, Sabeva E, Hristov I. “Clinical evaluation of Nd:YAG laser applications during nonsurgical periodontal treatment in patients with chronic periodontitis.”, Science and Research, 57-60 (2017)
    [14] 周賢能,蘇柏年,雷射最佳參數的選擇,機械月刊323 (2010)
    [15] S. W. Luo, T. L. Chang, H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Optics and Lasers in Engineering, 50, 220-225 (2012)
    [16] C. P. Wang, C. P. Chou, T. L. Chang, C. Y. Chou, “Micromachining of graphene based micro-capacitor using picosecond laser ablation,” Microelectronic Engineering, 189, 69-73(2018)
    [17] T. L. Chang, C. H. Huang, S. Y. Chou, S. F. Tseng, Y. W. Lee, 2017, “Direct fabrication of nanofiber scaffolds in pillar-based microfluidic device by using electrospinning and picosecond laser pulses,” Microelectronic Engineering, 177, 52-58.
    [18] A. Sun, Y. Chang, H. Liu, “Metal micro-hole formation without recast layer by laser machining and electrochemical machining”, Optik, 171, 694-705 (2018)
    [19] 陳毓勳,欒新華,特種衝壓模具與成形技術,機械製造與自動化, 43-48,(1990)
    [20] Z. Hu, K. Lynne, F. Delfanian, “Characterization of materials' elasticity and yield strength through micro-/nano-indentation testing with a cylindrical flat-tip indenter”, Materials, 30, 578-591 (2015)
    [21] H. D. Chang, “The Heat Affected Zone of Y-Ba-Cu-O Superconductor bulks with CO2 Laser Processing”, IOP Science, 1-70 (2007)
    [22] A Ikesue, ”Polycrystalline Nd:YAG ceramics lasers”, Optical materials, 183-187 (2002)
    [23] J. T. Walsh, T. J. Flotte, T. F. Deutsch,” Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage.”, Lasers in surgery and medicine, 9, 314-26 (1989)
    [24] R Hibst, U Keller,” Heat effect of pulsed Er:YAG laser radiation”, Proceedings of the SPIE, 1200, 379-386 (1990)
    [25] D. Ahn, C. Seo,“Micromachining of stainless steel–polymer composites using nanosecond and femtosecond UV lasers”, Advanced Manufacturing Technology, 74, 1691-1699 (2014)
    [26] S. K. So, W.K. Choi, C.H. Chen, L.M. Leung, “Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices”, Physica A: Statistical Mechanics and its Applications, 68, 447-450 (1999)
    [27] G. Pal, A. Dutta, K. Mitra, M.S. Grace,” Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes”,. Photochemistry and Photobiology B: Biology, 86, 252-261 (2007)
    [28] 張天立,鄧敦建,國立臺灣師範大學雷射工程技術與應用課程講義, (2019)
    [29] W. Pacquentin, N Caron, R Oltra, “Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance”, Applied Surface Science, 288, 34-39 (2014)
    [30] S. Hypsh, G. Shannon, “Femtosecond laser processing of metal and plastics in the medical device industry”, Thumpf, 2-10 (2014)
    [31] R. Agrawal, “Laser beam machining”, Encyclopedia of Nanotechnology, 101020, 30-35 (2016)
    [32] 王怡婷,張豐志,超疏水表面之製備及其學理研究,國立交通大學應用化學系碩士論文,(2005)
    [33] 鄭皓勇,王猛,王修星,基於Wenzel模型的粗糙介面異質形核分析,物理學報,60,66-72 (2011)
    [34] S. Xiao, Z. Zhang, J. He, “Atomistic dewetting mechanics of Wenzel and monostable Cassie–Baxter states”, Physical Chemistry Chemical Physics, 20, 24759-24767 (2018)
    [35] X. Zhang, B. Ding, Yifei Bian, Dong Jiang ,Ivan P Parkin, “Synthesis of superhydrophobic surfaces with Wenzel and Cassie–Baxter state: experimental evidence and theoretical insight”, IOP Science, 171 (2018)
    [36] S. D. Mariotti, P. Amieux, A. P. Hamri, V. Auger, G. Kermouche, F. Valiorgue, S. Valette, “Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability”, Applied Surface Science , 479, 344-350 (2019)
    [37] P. B. Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment”, Applied Surface Science , 5213-5218 (2011)
    [38] C.V Ngo, D.M Chun, “Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing”, Applied Surface Science, 435, 974-982 (2018)
    [39] F. H. Rajab, Z. Liu, L. Li, “Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring”, Applied Surface Science, 466, 808-821 ( 2019)
    [40] Z. C. Chen, T. L. Chang, C. H. Li, K. W. Su, C. C. Liu,” Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device”, Biosensors and Bioelectronics, 146, 111581 (2019)
    [41] T. L. Chang, Z. C. Chen, S. F. Tseng, “Laser micromachining of screen-printed graphene for forming electrode structures,” Applied Surface Science, 374, 305-311 (2016)
    [42] T. L. Chang, “Micromachining of microfluidic channels in glass by microjoule femtosecond laser pulses”, Microelectronic Engineering, 110, 450-456 (2012)
    [43] S. D. Mariotti, P. Amieux, A. P. Hamri, V. Auger, G. Kermouche, F. Valiorgue, S. Valette, “Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability”, Applied Surface Science, 479, 344-350 (2019)
    [44] S. Y. Kim, E. S. Park, T. A. Lograsso, M. Y. Huh, D. H. Kim, J. Eckert, M. Lee , “Imprinting bulk amorphous alloy at room temperature”, Scientific Reports, 5, 16540 (2015)

    無法下載圖示 本全文未授權公開
    QR CODE