簡易檢索 / 詳目顯示

研究生: 張玉澄
Chang, Yu-Cheng
論文名稱: 重力作用下糖分子於水溶液中之垂直方向的分布
Sucrose Molecules Altitudinal Distribution under Gravitational Field
指導教授: 陳育霖
Chen, Yu-Lim
蔡志申
Tsay, Jyh-Shen
口試委員: 徐駿森
陳育霖
Chen, Yu-Lim
蔡志申
Tsay, Jyh-Shen
口試日期: 2022/07/13
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 104
中文關鍵詞: 糖水濃度分布
研究方法: 實驗設計法行動研究法調查研究個案研究法
DOI URL: http://doi.org/10.6345/NTNU202200928
論文種類: 代替論文:專業實務報告(專業實務類)
相關次數: 點閱:163下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由濃度-折射率線性關係,糖水水溶液在重力以及擴散的效應下,其濃度分布圖可以被得知。糖水溶液之折射率的測量,已在此研究分析進行前,由在臺北市中小學科學展覽會中的作品,所提出之替代方式取得,而該方式所得出的結果經過文獻的參照,顯現出是可被信任的。在重量百分濃度 5% 、10% 的糖水溶液中,其濃度分布圖和著名的Perrin 分布是符合的,然而當重量百分濃度為15%、20% 和 25% 時,濃度分布趨勢呈現出和前者不同的凹向性。濃度的不同種的形式在研究分析進行之前會被探討介紹並且順帶提出一種定義稀薄溶液的方式。在研究分析中,我們考慮了溶質之熱力學性的半徑是和糖水溶液局部濃度相依的,因此傳統上之指數分布的濃度函數,在方程式的兩側都和濃度應變量有關。此種有著指數長相但是方程式兩側都為濃度相關的分布在這研究中被命名以及簡稱為DEP。當拿傳統的單純指數分布和DEP去做比較時,我們可以得出在系統內部的粒子大小分布,並且在重新檢視對於一空間中的溶質數目的計數方式後,對於不同初始濃度的糖水水溶液,此研究建立了有效粒子數對高度的分布圖。這些分布圖在所有的濃度,都呈現了凹性的一致性,並且對其做指數擬合也能得出足夠滿意的程度。

    Concentration profiles of sucrose solution under the effect of gravity and diffusion are being obtained by concentration-refractive index linear relation. Refractive indices of sucrose solution are beforehand measured with an alternative way proposed by the work displayed in Taipei Primary and Secondary School Science Fair. Method and result of the work are verified to be trustworthy with supports from related literatures. Concentration profiles are found to be resembling representative Perrin’s distribution at nominal concentration 0.05, 0.10 in mass fraction while for nominal concentration 0.15, 0.20, 0.25, profiles exhibit opposite curvature compared with the two previous ones. Various expressions of concentration are introduced before analysis carried out and a criterion of dilute solution is incidentally brought. In the analysis, dependence of solute’s hydrodynamic radius on local concentration of sucrose solution is considered and subsequently classical exponential form has dependent variable on both sides of the equation. A direct comparison between classical exponential function and concentration dependence exponential function, called disguised exponential profile (DEP) in this work, enables us to produce solute size distribution within the system involved and then after reexamining how to count the number of solute in a unit of space, profiles of effective number of sucrose versus height have been built for all nominal concentrations. They are all showing the same pattern and exponential fit put on them is quite satisfying result.

    Acknowledgement i 中文摘要 ii Abstract iii Content iv LIST OF TABLES vi LIST OF FIGURES vii Chapter 1 Introduction 1 1.1. Background 1 1.1.1. Studying Microscopic System by Concentration Profile 1 1.1.2. Inception of this Thesis 3 1.2. Course of this Thesis 4 Chapter 2 Experimental Setup and Theory 5 2.1. Refractive Index and Concentration Linear Relation 5 2.1.1. Experiment Setup and Result 5 2.1.2. Verification 8 2.2. Measured concentration profile 9 2.2.1. Experiment setup 9 2.2.2. Outcome Demonstration 12 2.3. Defining the system 14 2.3.1. Fluid/Liquid and Homogenous/Heterogeneous 14 2.3.2. Solution and Composition 16 2.4. Concentration 18 2.4.1. Term Relaxation 18 2.4.2. Mass Fraction 19 2.4.3. Nominal/Local Concentration 20 2.4.4. Molarity and Molality 22 2.4.5. Concentration Relation 24 2.4.6. Criterion of Dilute Solution 31 2.5. Diffusion Coefficient 39 2.5.1. Stokes-Einstein Relation 39 2.5.2. Diffusion Coefficient Dependent on Concentration 43 2.6. Sedimentation Equilibrium 48 2.6.1. Steady State Concentration Profile 48 2.6.2. Concentration Dependent Variables Consideration 50 2.6.3. Self Dependent Concentration Profile 52 Chapter 3 Method and Result 54 3.1. Method 54 3.1.1. DEP 54 3.1.2. Species Radius 62 3.2. Result 65 3.2.1. Flowchart of Data Processing 65 3.2.2. fM3 and f(M) in Different Nominal Concentrations 65 3.2.3. Species Size Distribution 77 3.3. Effective Number Treatment 79 3.3.1. Number Density Profile based on Effective Number 81 Chapter 4 Conclusion 89 Reference 91 Appendix 95

    S C Bradford 1938 Proc. Phys. Soc. 50 30.
    Tirrell, M., & Malone, M. F. (1977). Stress‐induced diffusion of macromolecules. Journal of Polymer Science: Polymer Physics Edition, 15(9), 1569-1583.
    Kirchhoff, H. (2014). Diffusion of molecules and macromolecules in thylakoid membranes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1837(4), 495-502.
    Agarwal, U. S., Dutta, A., & Mashelkar, R. A. (1994). Migration of macromolecules under flow: the physical origin and engineering implications. Chemical Engineering Science, 49(11), 1693-1717.
    Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual review of biomedical engineering, 14, 1-16.
    Vert, M., Doi, Y., Hellwich, K., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M. & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410.
    Starov, V. M. (Ed.). (2010). Nanoscience: colloidal and interfacial aspects (Vol. 147). CRC Press.
    Anders, A. (2008). Macroparticles. In: Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79108-1_6.
    Blum, J. J. (1960). Concentration profiles in and around capillaries. American Journal of Physiology-Legacy Content, 198(5), 991-998.
    Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of contaminant hydrology, 7(1-2), 51-73.
    Barrell, H., & Sears, Junr, J. E. (1939). The refraction and dispersion of air and dispersion of air for the visible spectrum. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 238(786), 1-64.
    Edlén, B. (1966). The refractive index of air. Metrologia, 2(2), 71.
    bin Mat Yunus, W. M., & bin Abdul Rahman, A. (1988). Refractive index of solutions at high concentrations. Applied optics, 27(16), 3341-3343.
    Singh, V. K., Jaswal, B. B. S., Kumar, V., Prakash, R., & Rai, P. (2013). Application of He-Ne laser to study of the variation of refractive index of liquid solutions with the concentration. Journal of Integrated Science and Technology, 1(1), 13-18.
    Belay, A., & Assefa, G. (2018). Concentration, wavelength and temperature dependent refractive index of sugar solutions and methods of determination contents of sugar in soft drink beverages using laser lights. J. Lasers Opt. Photonics, 5(2), 1000187.
    Oxtoby, Gills, Campion/ seventh edition of Principles of Modern Chemistry.
    Solutions - Homogeneous Mixtures. (2020, December 24). https://chem.libretexts.org/@go/page/47547.
    He, M., He, J. & Christakos, G. Improved space–time sea surface salinity mapping in Western Pacific ocean using contingogram modeling. Stoch Environ Res Risk Assess 34, 355–368 (2020). https://doi.org/10.1007/s00477-019-01764-1.
    "art, n.1." OED Online. Oxford University Press, March 2022. Web. 8 June 2022.
    OECD (2019), Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264069961-en.
    OECD (2004), Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264069947-en.
    CONCENTRATIVE PROPERTIES OF AQUEOUS SOLUTIONS: DENSITY, REFRACTIVE INDEX, FREEZING POINT DEPRESSION, AND VISCOSITY”, in CRC Handbook of Chemistry and Physics, Internet Version 2005, David R. Lide, ed., <http://www.hbcpnetbase.com>, CRC Press, Boca Raton, FL, 2005.
    Garrod, J. E., & Herrington, T. M. (1970). Apparent molar volumes and temperatures of maximum density of dilute aqueous sucrose solutions. The Journal of Physical Chemistry, 74(2), 363-370.
    Gosting, L. J., & Morris, M. S. (1949). Diffusion studies on dilute aqueous sucrose solutions at 1 and 25 with the Gouy interference method. Journal of the American Chemical Society, 71(6), 1998-2006.
    Ratnayake, W. S., Otani, C., & Jackson, D. S. (2009). DSC enthalpic transitions during starch gelatinisation in excess water, dilute sodium chloride and dilute sucrose solutions. Journal of the Science of Food and Agriculture, 89(12), 2156-2164.
    Peter Atkins, Julio de Paula. Atkin’s Physical Chemistry Eighth Edition.
    Ken A. Dill, Sarina Bromberg. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology.
    Miller Christina Cruickshank. 1924The Stokes-Einstein law for diffusion in solutionProc. R. Soc. Lond. A106724–749)( ‘Ann. d. Physik’ (4), vol. 17, p. 549 (1905); vol. 19, p. 371 (1906); ‘ Zeit. furElektrochem.,’ vol. 14, p. 235 (1908).
    Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of pendulums.
    Dey Subhasish, Ali Sk Zeeshan and Padhi Ellora 2019Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulicsProc. R. Soc. A.4752019027720190277.
    David Leith (1987) Drag on Nonspherical Objects, Aerosol Science and Technology, 6:2, 153-161,DOI:10.1080/02786828708959128.
    Kaszuba, M., McKnight, D., Connah, M.T. et al. Measuring sub nanometre sizes using dynamic light scattering. J Nanopart Res 10, 823–829 (2008). https://doi.org/10.1007/s11051-007-9317-4.
    SCHULTZ SG, SOLOMON AK. Determination of the effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol. 1961 Jul;44(6):1189-99. doi: 10.1085/jgp.44.6.1189. PMID: 13748878; PMCID: PMC2195139.
    Jennings B. R. and Parslow K. 1988Particle size measurement: the equivalent spherical diameterProc. R. Soc. Lond. A419137–149.
    Giorgi F, Macko P, Curran JM, Whelan M, Worth A, Patterson EA. 2021 Settling dynamics of nanoparticles in simple and biological media. R. Soc. Open Sci. 8:210068/ V.R.N. Telis , J. Telis-Romero , H.B. Mazzotti & A.L. Gabas (2007) Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations, International Journal of Food Properties, 10:1, 185-195, DOI: 10.1080/10942910600673636.
    V.R.N. Telis , J. Telis-Romero , H.B. Mazzotti & A.L. Gabas (2007) Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations, International Journal of Food Properties, 10:1, 185-195, DOI: 10.1080/10942910600673636.
    Dickinson, E. J., Ekström, H., & Fontes, E. (2014). COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochemistry communications, 40, 71-74.
    COMSOL. The Finite Element Method (FEM) (2016).
    Cole, J. L., Lary, J. W., Moody, T. P., & Laue, T. M. (2008). Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods in cell biology, 84, 143-179.
    Einstein, A., & Davis, F. A. (2013). The principle of relativity. Courier Corporation.
    Garbett, N. C., Mekmaysy, C. S., & Chaires, J. B. (2010). Sedimentation velocity ultracentrifugation analysis for hydrodynamic characterization of G-quadruplex structures. Methods in molecular biology (Clifton, N.J.), 608, 97–120. https://doi.org/10.1007/978-1-59745-363-9_7.
    Aziz, Z., Daugherty, M. A., de la Torre, J. G., Demeler, B., Douady, C. J., Durchschlag, H., ... & Correia, J. J. (2007). Analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry.
    Meselson, M., Stahl, F. W., & Vinograd, J. (1957). EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proceedings of the National Academy of Sciences of the United States of America, 43(7), 581–588. https://doi.org/10.1073/pnas.43.7.581.
    Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical journal, 78(3), 1606-1619.
    Howlett, G. J., Minton, A. P., & Rivas, G. (2006). Analytical ultracentrifugation for the study of protein association and assembly. Current opinion in chemical biology, 10(5), 430-436.
    Mason, M., & Weaver, W. (1924). The settling of small particles in a fluid. Physical Review, 23(3), 412.
    Jean Perrin. Atoms. London Constable, 1916.
    Arora, K. R. (2008). Soil Mechanics and Foundation Engineering (Geotechnical Engineering): In SI Units. Standard publishers.
    Kaszuba, M., McKnight, D., Connah, M.T. et al. Measuring sub nanometre sizes using dynamic light scattering. J Nanopart Res 10, 823–829 (2008). https://doi.org/10.1007/s11051-007-9317-4.
    Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE journal, 1(2), 264-270.
    Hayduk, W., & Laudie, H. (1974). Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE Journal, 20(3), 611-615.

    下載圖示
    QR CODE