研究生: |
潘建宏 |
---|---|
論文名稱: |
區間第二類模糊類神經網路控制器與其在馬達上之應用 Interval Type-2 Fuzzy Neural network Controller and Its Application in DC Motors |
指導教授: |
柯佳伶
Koh, Jia-Ling |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 區間第二類模糊 、適應控制 、倒階控制 、模糊類神經 、非線性控制 |
論文種類: | 學術論文 |
相關次數: | 點閱:503 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在論文中,提出一個結合區間第二類模糊類神經網路的倒階控制器,並分別針對典型非線性系統和非典型非線性系統來做控制器的設計。主要的控制器為區間第二類模糊類神經網路近似器,其設計可以調整內部參數,包括平均值、標準差等,為了線上調整這些內部參數,本文設計適應律來調整,並使用均值定理的方法來取代傳統的泰勒線性化展開,雖然泰勒線性化展開可以將非線性的函數轉換成部分線性形式,但是會導致高階微分項帶入到近似誤差的模型裡,為了避免產生高階微分項的問題,所以使用均值定理來取代。閉迴路系統的穩定性也可以透過李亞普諾夫方程式來分析說明,以保證該系統是漸近穩定的。最後以模擬結果,來論證本文所提出的方法在受控體的輸出及想要的參考訊號兩者之間的追蹤誤差可以達到較好的追蹤效能。
In this thesis, an adaptive backstepping interval Type-2 fuzzy neural network (IT2FNN) controller is proposed for a class of nonlinear system. We designed the controllers for affine and nonaffine nonlinear systems, respectively. The IT2FNN identifier is the main controller. The design of the controller can adjust its inside parameters, including mean and standard deviation. In order to adjust these parameters, we use adaptive law. We also use mean value theory to replace Taylor linearization expansion. Although Taylor linearization expansion, which can transform the nonlinear function into partially linear form. However, the linearization expansion method results in the fact that the higher-order derivative terms introduced into approximation model may produce the unpredictable and unfavorable influence on control performance. In addition, the stability of the closed-loop system is analyzed by mean of Lyapuniv function. Finally, simulation results use one example to demonstrate the output tracking error between the plant output and the desired reference command can achieve favorable tracking performance of the proposed scheme.
[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, no. 2, pp. 359-366, 1989.
[2] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control,” IEEE Transactions on Systems Man and Cybernetics, vol. 25, no. 5, pp. 841-851, May 1995.
[3] W. Y. Wang, Y.H. Chien, and I.H. Li, “An On-Line Robust and Adaptive T-S Fuzzy-Neural Controller for More General Unknown Systems,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 33-43, 2008.
[4] C. T. Lin, and L. Siana, “An Efficient Human Detection System Using Adaptive Neural Fuzzy Networks,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 150-160, 2008.
[5] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Transactions on Fuzzy Systems, vol. 9, pp.578-594, 2001.
[6] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems,” IEEE Transactions On Robotics and Automation, vol. 15, no. 5, pp. 805-817, Oct. 1999.
[7] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least squares learning,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 807–814, Sep. 1992.
[8] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[9] M. Jamshidi, N. Vadiee, and T. J. Ress, Fuzzy Logic and Control. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[10] M. Polycarpou and P. A. loannou, “Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks,” in Proc. Amer. Control Conf., 1992, pp. 36–40.
[11] E. B. Kosmatopoulos, P. A. Ioannou, and M. A. Christodoulou, “Identification of nonlinear systems using new dynamic neural network structures,” in Proc. IEEE Conf. Decision Control, Arizona, 1992, pp. 20–25.
[12] C. A. Rovithakis and M. A. Christodoulou, “Adaptive control of unknown plants using dynamical neural networks,” IEEE Trans. Syst. Man, Cybern., vol. 24, no. 3, pp. 400–411, Mar. 1995.
[13] F. C. Chen and H. K. Khalil, “Adaptive control of nonlinear systems using neural networks,” Int. J. Control, vol. 55, no. 3, pp. 1299–1317.
[14] Y. G. Leu, W.Y.Wang, and T. T. Lee, “Robust adaptive fuzzy-neural controller for uncertain nonlinear systems,” IEEE Trans. Robot. Automat., vol. 15, no. 5, pp. 805–817, Oct. 1999.
[15] Y. G. Leu, T. T. Lee, and W. Y. Wang, “Observer-based adaptive fuzzyneural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 29, no. 5, pp. 583–591, Oct. 1999.
[16] W. Y. Wang, M. L. Chan, C. C. Hsu, and T. T. Lee, “Tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 32, no. 4, pp. 483–492, Aug. 2002.
[17] S. S. Ge and J. Zhang, “Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback,” IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 900–918, Jul. 2003.
[18] S. S. Ge and C.Wang, “Adaptive neural control of uncertain MIMO nonlinear systems,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 674–692, May 2004.
[19] Y. Li, S. Qiang, and X. Z. O. Kaynak, “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 693–701, May 2004.
[20] Q. Zhu and L. Guo, “Stable adaptive neurocontrol for nonlinear discretetime systems,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 653–662, May 2004.
[21] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 801–806, Sep. 1992.
[22] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and decision system,” IEEE Trans. Comput., vol. 40, no. 12, pp. 1320–1336, Dec. 1991.
[23] L. X.Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp. 146–155, May 1993.
[24] B. S. Chen, C. H. Lee, and Y. C. Chang, “H Tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 32–43, Feb. 1996.
[25] W.-Y. Wang and Y.-H. Li, “Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 33, no. 6, pp. 966–976, Dec. 2003.
[26] W. L. Tung and C. Quek, “Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 686–695, Feb. 2004.
[27] W.-Y. Wang, C.-Y. Cheng, and Y.-G. Leu, “An on-line GA-based output feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems,” IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 334–345, Feb. 2004.
[28] C. H. Wang, H. L. Liu and C.T. Lin, ”Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 31, no.3, pp 467-475 June 2001.
[29] L. Yu and Y. Q. Zhang, “Evolutionary fuzzy neural networks for hybrid financial prediction,” IEEE Transactions On Man and Cybernetics Part C, vol. 35, no. 2, pp. 244-249, May 2005.
[30] C. H. Wang, W. Y. Wang, T.T. Lee, and P.S. Tseng, ” Fuzzy B-Spline Membership Function (BMF) and Its Applications in Fuzzy-Neural Control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25. no. 5, May 1995.
[31] W. Y. Wang, T.T. Lee, and C. L. Liu, “Function Approximation Using Fuzzy Neural Networks with Robust Learning Algorithm,” IEEE Trans on Systems, Man and Cybernetics, Part B, vol.27 no. 4, pp. 740-747, Aug. 1997.
[32] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, June 1965.
[33] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.
[34] H. Hagras, “Type-2 FLCs: A new Generation of Fuzzy Controllers”, IEEE Computational Intelligence Magazine, Vol. 2, No. 1, pp. 30-43, February 2007.
[35] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design, ”IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.
[36] J. M. Mendel, R. I. B. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 808–821, Dec. 2006.
[37] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[38] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf. Sci., vol. 132, no. 1, pp. 195–220, Feb. 2001.
[39] C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 3, pp. 1462–1477, Jun. 2004.
[40] E. Jammeh, M. Fleury, C. Wagner, H. Hagras, M. Ghanbari, “Interval Type-2 Fuzzy Logic Congestion Control for Video Streaming across IP Networks”, IEEE Transaction of Fuzzy Systems, December 2009.
[41] H. Hagras, F. Doctor, A. Lopez, A and V. Callaghan, “An Incremental Adaptive Life Long Learning Approach for Type-2 Fuzzy Embedded Agents in Ambient Intelligent Environments,” IEEE Transactions on Fuzzy Systems, Vol. 15, No.1, pp. 41-55, February 2007.
[42] J. Figueroa, J. Posada , J. Soriano, M. Melgarejo and S. Roj, “A type-2 fuzzy logic controller for tracking mobile objects in the context of robotic soccer games,” Proceeding of the 2005 IEEE International Conference on Fuzzy Systems, pp. 359-364, Reno, USA, May 2005.
[43] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, Vol.12, pp. 524-539, August 2004.
[44] P. Lin, C. Hsu and T. Lee, “Type-2 fuzzy logic controller design for buck DC-DC converters, ” Proceeding of the 2005 IEEE International Conference on Fuzzy Systems, pp. 365-2370, Reno, USA, May 2005.
[45] F. Zarandi, B. Turksen, T. Kasbi, “Type-2 Fuzzy Modeling for Desulphurization of Steel Process”, Expert Systems with Applications, Vol. 32, No. 1, 157—171, 2007.
[46] M. Hojati and S. Gazor, “Hybrid Adaptive Fuzzy Identification and Control of Nonlinear Systems,” IEEE Transactions On Fuzzy Systems, vol. 10, no. 2, April 2002.
[47] J. Y. Choi and J. A. Farrell, “Nonlinear adaptive control using networks of piecewise linear approximators,” Proceedings of 38thConference on Decision & Control Phoenix, Arizona USA. December 1999.
[48] L. X. Wang, “Stable adaptive fuzzy controllers with application to Inverted pendulum tracking” IEEE Transactions on Fuzzy Systems, Man, And Cybernetics-Part B: Cybernetics, vol. 26, no. 5, October 1996.
[49] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design. New York: Wiley, 1995.
[50] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controller for feedback linearizable system,” IEEE Transactions Automat. Contr., vol. 36, pp. 1241–1253, 1991.
[51] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New directions, Upper Saddle River, NJ: Prentice-Hall, 2001.
[52] M. Karakose and E. Akin, “Type-2 fuzzy activation function for multilayer feedforward neural networks,” in Proc. IEEE Int. Conf. Syst., Man Cybern., Oct. 10–13, 2004, vol. 4, pp. 3762–3767.
[53] S. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[54] B. S. Chen, C. H. Lee, and Y. C. Chang, “ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, February 1996.
[55] H. EL FADIL, F. GIRI, “Accounting of DC-DC Power converter dynamics in DC motor velocity adaptive control,” Proceeding of the 2006 IEEE International Conference on Control Applications, pp. 3157-3162, Munich, Germany, October 4-6, 2006.
[56] H. B. Zhang, C. G. Li, and X. F. Liao, “Stability Analysis and H∞ Controller Design of Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 36, pp.685-698, 2006.