研究生: |
劉秀娟 Lau,Shiu-Chung |
---|---|
論文名稱: |
探討教-學序列對八年級學生建立電解質概念及心智模式的影響 |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 183 |
中文關鍵詞: | 教-學序列 、心智模式 、電解質 |
英文關鍵詞: | Mental model, TLS |
論文種類: | 學術論文 |
相關次數: | 點閱:141 下載:60 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
「電解質」是化學教材中相當重要的單元之一,從中小學乃至於大學有關化學的課程,該相關概念皆佔有相當重要的地位。而且「電解質」概念可說是後續進行酸鹼中和、電化學電池、電流的化學效應等相關電化學概念的基礎。但是學生在經過學習後卻仍存在有微觀的迷思概念。因此本研究希望設計一份試題協助教師進行診斷,了解學生在「電解質」概念上的迷思概念;並利用TLS(教-學序列)的設計原則設計一份針對學生迷思概念的教材。
依據上述的目的,本研究的問題有:(一)TLS是否可以幫助學生學習電解質概念?(二)TLS對學生學習電解質的心智模式的改變?因此本研究選取「解離」、「電中性」、「導電的原因」及「離子的運動情形」四個教學主題,並隨機選取兩班八年級學生作為對照組與TLS實驗組進行教學研究。
本研究的結果如下:
1.就學習的成效:兩組在教學前的前測成績並無顯著差異,經過教學後,在後測
及延宕測驗的成績上,TLS實驗組皆優於對照組,並且有顯著差異。
2.就概念的學習及電解質的心智模式一致性而言:
(1)電解質導電的微觀解釋:後測中實驗組有82%的學生持有離子的心智模
式,對照組有48%的學生持有離子的心智模式。延宕測驗中實驗組有78
%的學生持有離子的心智模式,對照組有52%的學生持有離子的心智模
式。
(2)電中性概念:後測中實驗組有59%的學生持有總電量的心智模式,對照組
中有48%的學生持有總電量的心智模式。延宕測驗中實驗組有67%的學生
持有總電量的心智模式,對照組中有49%的學生持有總電量的心智模式。
(3)通電前後粒子移動的概念:通電前粒子移動方向的概念部份,後測中實
驗組有83.9%的學生持有隨機運動的心智模式,對照組中有70.6%的學生持
有隨機運動的心智模式。延宕測驗中實驗組有74.2%的學生持有隨機運動的
心智模式,對照組中有67.6%的學生持有隨機運動的心智模式。通電後粒子
移動方向的概念部份,後測中實驗組有93.5%的學生持有正離子移向負極的
心智模式,對照組中有76.5%的學生持有正離子移向負極的心智模式。延宕
測驗中實驗組有93.5%的學生持有正離子移向負極的心智模式,對照組中有
79.4%的學生持有正離子移向負極的心智模式。
(4).電解質部分解離的概念:後測中實驗組有59.4%的學生持有部分解離且
離子比分子多的心智模式,對照組有45.5%的學生持有部分解離且離子比
分子多的心智模式。延宕測驗中實驗組有46.9%的學生持有部分解離且離
子比分子多的心智模式,對照組有43.8%的學生持有部分解離且離子比分
子多的心智模式。
3.就情意面向而言:TLS實驗組學生認為此次的教學可以幫助理解且較有趣,對本次教學所抱持的態度是正向的。
綜合以上所述,本研究實驗組所使用的TLS教學策略似乎可以幫助學生建立較佳的「電解質」心智模式。
Abstract
The concept of electrolyte has played an important role in learning chemistry, from the elementary and middle schools and even to the university. Moreover, the "electrolyte" concept is a basic concept of the acids, bases, and salt and electro- chemical cell, electric current. But students actually still existed misconceptions after the process of study.
This research hopes to designs a test question to help the teacher to understand the students’ misconceptions in "electrolyte" and use the designing principle of TLS (teaching- learning sequence) to designs teaching material which focuses on students’ misconceptions.
According to the purpose mentioned above, the research questions were as follows. First, could TLS help student learn the electrolyte or not? Second, how students' mental models changes after instruction?
Therefore this research selection "the dissociation", "the electricity neutrality", "the reason of electric conduction " and "the ion movement situation" four teaching subjects, and stochastically select two class of students conduct the teaching research as the control group and the TLS experiment group.
This research result as follows:
1. On study result: as for concept learning, TLS group performed better than the other group.
2. The mental model of electrolyte:
(1) Electrolyte electric conduction microscopic explanation that:In past tests showed 82% TLS group students' major mental model were “atom”, the control group were 48% s. In delays test showed 78% TLS group students ' major mental model were “atom”, the control group were 52% .
(2) Electricity neutral concept: In past tests showed 59% TLS group students ' major mental model were “total electric quantity”, the control group were 48% s. In delays test showed 67% TLS group students ' major mental model were “total electric quantity”, the control group were 49% .
(3) the atoms' movement: In past tests showed 83.9% TLS group students' major mental model were “random motion”, the control group were 70.6% s. In delays test showed 74.2% TLS group students ' major mental model were “random motion”, the control group were 67.6% . In past tests showed 93.5% TLS group students ' major mental model were “the cation move to the cathode”, the control group were 76.5% s. In delays test showed 93.5% TLS group students ' major mental model were “the cation move to the cathode”, the control group were 73.4% .
(4) Electrolyte partial dissociation concept: In past tests showed 59.4% TLS group students' major mental model were “partial dissociation”, the control group were 45.5% s. In delays test showed 46.9% TLS group students' major mental model were “partial dissociation”, the control group were 43.8%.
3. About learning attitude,students in TLS group thought this teaching was interesting, not too hard to understand ,and might promote the understanding. TLS group had the most positive attitude.
Above the synthesis states, this teaching strategy may help the student to establish good mental models of “electrolyte".
參考文獻
中文文獻
王亦欣(2003):探討國二學生閱讀漫畫表徵的文本對地球科學概念學習的影響— 以天文和溫室效應為例,台灣師大科學教育研究所碩士論文(未出版)。
宋志雄(1993):探究國三學生酸與鹼的迷思概念並應用以發展教學診斷工具。
科學教育(彰化師大),4,1-23。
何佳燕(2002):探討粒子概念對國二學生學習溫度與熱的學習成就與心智模式
之影響。國立臺灣師範大學科學教育研究所。
邱美虹與林靜雯(2002):以多重類比探究兒童電流心智模式之改變。科學教育學
刊,10(2),109-134。
邱美虹和翁雪琴(1995):國三學生「四季成因」之心智模式與推論歷程之探討。
科學教育學刊, 3(1), 23-68。
林靜雯(2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念
學習之影響。台北市:國立臺灣師範大學科學教育研究所碩士論文。
林靜雯(2005):由概念演化觀點探究不同教科書教-學序列對不同心智模式學
生電學學習之影響。台北市:國立臺灣師範大學博士論文(未出版)。
林靜雯與邱美虹(2005):整合類比與多重表徵研究取向探究多重類比設計對兒童
電學概念學習之影響。科學教育學刊,13(3),317-345。
姚錦棟(2003):我國中學生酸鹼鹽迷思概念和心智模式之研究。國立台灣師範
大學科學教育研究所碩士論文。
莊雅茹(1996):CAL軟體動畫介面設計,教學科技與媒體,28,13-18。
郭重吉(1988):從認知觀點探討自然科的學習。教育學院學報,13,335-363。
張榮耀(2000):以科學史與本體論的觀點探討概念改變之機制。台北市:國立
台灣師範大學科學教育研究所碩士論文。
張仁邦和張振松(2000):日出日落的電腦模擬,科學教育研究與發展專刊,89.
12月,47-68頁。
張仁邦和蕭倍元(2000):地球運動之電腦模擬,國教新知,46(3),58-68。
張欣怡(1997):地球科學不同克文表徵教材對學習表現之研究,台灣師大科學
教育研究所碩士論文。
陳珊珊(1993):探究國三學生酸與鹼的迷思概念並應用以發展診斷式工具,台
北市:國立台灣師範大學化學研究所碩士論文。
陳婉茹(2004):探討動態類比對於化學平衡概念學習之研究-八年級學生概念本
體及心智模式之變化。國立臺灣師範大學科學教育研究所。
陳盈吉(2004):探究動態類比對於科學概念學習與概念改變歷程之研究-以國
二學生學習氣體粒子概念為例。國立臺灣師範大學科學教育研究所。
詹麗卿(2003):,《中等學校化學動畫教材之研製》,台灣師範大學化學系研究
所論文。
楊純珠(1999):「溶液」多媒體CAL之概念學習研究。台北市:國立台灣師範
大學化學研究所碩士論文。
趙素敏(2003):國小學童酸鹼迷思概念類型與成因之研究。台北市立師範學院
科學教育研究所碩士論文。
劉俊庚(2002):迷思概念與概念改變教學策略之文獻分析—以概念構圖和後設分
析模式探討其意涵與影響。台北市:國立臺灣師範大學科學教育研究所碩士
論文。
教育部(2003):國民中小學九年一貫課程暫行綱要--「自然與生活科技」課程
綱要。教育部編印。
英文文獻
Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (2002). Examining the effects
Of different multiple representational systems in learning primary
mathematics. Journal of the Learning Sciences. 11(1), 25-62.
Abimbola, I, O. (1988). The problem of terminology in the study of student
conceptions in science. Science Education, 72, 175-184
Andersson, B., & Bach, F. (1996). Developing new teaching sequences in
science: The example of "gases and their properties". Paper presented
at the Research in Science Education in Europe: Current Issues and
Themes, London.
Asoko, H. (1996). Developing scientific concepts in the primary
classroom: Teaching about electric circuits. In G. Welford, J.
Osborne & P. Scott (Eds.), Research in science education in Europe.
London / Washington, D. C.: Falmer Press.
Artigue, M. (1988). Ingéniérie didactique. Recherches en didactique des
Mathématiques, 9(3), 281–308.
Anderson,C.W.Smith.E.L.Teaching
science.In:Richardson-Koehler.Educators' Handbook:A research
perspective.White Plains,NY:Longman,Inc,1987:84-111
Ainsworth, S. E., (1999). A functional taxonomy of multiple
representations.Computers and Education, 33(2/3), 131-152. ISSN
0360-1315
Baek, Y. K. & Layne, B. H. (1988). Color, graphics, and animation in a
computer assisted learning tutorial lesson. Journal of
Computer-Based Instruction, 15(4), 131-135
Borges, A. T., & Gilbert, J. K. (1999). Mental models of electricity.
International Journal of Science Education, 21(1), 98-117.
Bruner , J.S.(1960 ).The process of education.
Bybee, R. W., & deBoer, G. E. (1994). Research on goals for the science
curriculum. In D. L. Gabel. (Ed.), Handbook of research on science
teaching and learning. New York: Macmillan.
Boohan, R. (1996). Using a picture language to teach about processes of
change. Paper presented at the Research in Science Education in
Europe: Current Issues and Themes, London
Chi, M. T. H. (1992). Conceptual change within and across ontological
categories: Implications for learning and discovery in sciences.
Chi, M. T. H. (I997). Creativity: Shifting across ontological categories
flexibly.In Ward, T. B., Smith, S. M., & Vaid J. (Eds.), Conceptual
Structures and processes: Emergence, Discovery and Change.
(209-234). Washington, D.C: American Psychological Association.
Chi, M. T. H. (2000). Cognitive understanding levels. Encyclopedia of
Psychology. In Kazkin, A. E. (Ed), 2:146-151. APA and Oxford
University Press.
Chi, M. T. H. (in press). Common Sense Conceptions of Emergent Processes.
Journal of the Learning Sciences.
Chi, M. T. H. & Hausmann, R. G. M. (2003). Do radical discoveries require
ontological shifts? International Handbook on Innovation. Shavinina,
L.V. (Ed.) Elsevier Science Ltd., 430-444.
Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of
Conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering
conceptual change:Issues in theory and practice (pp. 3-27).
Netherlands: Kluwer Academic Publishers.
Craik, K. (1943). The nature of explanation.Cambridge, England: Cambridge
University Press.
Chang, C.Y., & Barufaldi, J.P. (1999). The use of a
problem-solving-based instructional model in initiating change in
students’ achievement and alternative frameworks. International
Journal of Science Education, 21(4),373-388.
Cox, R. & Brna, P. (1995). Supporting the use of external representations
in problem solving: The need for flexible learning environments.
Journal of Artificial Intelligence in Education, 6, 239-302
diSessa, A. A. (1988). Knowledge in pieces. In G. F. a. P. Pufall (Ed.),
Constructivism in the computer age. Cambridge, MA: MIT Press.
diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and
Instruction,10(2 & 3), 105-225.
Driver, R. & Easley, J. (1978). Puiples and Paradigms: A review of
literature related to concept development in adolescent science
students. Science Education, 5,61-84.
Driver, R. (1985). Beyond appearances: The conservation of matter under
physical and chemical transformations. In R. Driver, E. Guesne, &
A Tiberghien (Eds.), Children’s ideas in science (pp.145-169).
Philadelphia: Open University Press.
D. Jong (Eds.), Learning with Multiple Repre-sentations (pp. 41-66). New
York: Pergamon.
Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical
Considerations Concerning the Problem of Representation. In:
Janvier,C. (Ed.), Problems of Representation in the Teaching and
Learning of Mathematics, Lawrence Erlbaum Associates, Publishers,
Hillsdale,New Jersey, London
Gentner, D. & Stevens, A. (1983). Mental Models. Hillsdale, NJ: Erlbaum.
Gunstone, R. F., & Mitchell, I. J. (1998). Metacognition and conceptual
change. In J. J.
Helm, H. & Novak, J. D. (1983).Proceedings of The International Seminar
on Misconceptions in Science And Mathematics.Ithaca, NY: Department
of Education, Cornell University.
Johnstone, A. H. (1993). The development of chemistry teaching. Journal
Of Chemical Education, 70(9), 701-705.at the National
Associate of Research in Science Teaching 1995, San Francisco, CA.
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science
oflanguage, inference, and consciousness. Cambridge, MA: Harvard
UniversityPress.
Johnson-Laird, P. N. (1989). Mental Models. In M. I. Posner (Ed.),
Foundations of cognitive science (pp. 469-499). Cambridge, MA: MIT
Press.
Kattmann, M., Duit, R., Gropengieber, H., & Komorek, M. (1995). A model
Of educational reconstruction. Paper presented at the National
Associate of Research in Science Teaching 1995, San Francisco, CA.
Komorek, M., & Duit, R. (2004). The teaching experiment as a powerful
method to develop and evaluate teaching and learning sequences in
the domain of non-linear systems. International Journal of Science
Education, 26(5),619-633.
Kattmann, M., Duit, R., Gropengieber, H., & Komorek, M. (1995). A model
Of educational reconstruction. Paper presente
Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically
Validating functions of pictures in prose, in: Willows, D.M. &
Houghton, H.A. (Eds.), The Psychology of Illustration. Vol. 1: Basic
Research, New York: Springer, 1-50. 219
Levin, J. R. & et Lesgold, A. M. (1978). On pictures in prose. Educational
Communication and Technology Journal, 26, 233-243.
Lijnse, P. (1995). "Developmental research" as a way to an empirically
based "didactical structure" of science. Science Education, 79(2),
189-199.
Lijnse, P. (2000). Didactics of science: The forgotten dimension in
science education research? In R. Millar, J. Leach & J. Osborne
(Eds.), Improving science education: The contribution of research
(pp. 308-326). Buckingham: Open University Press.
Lijnse, P., & Klaassen, K. (2004). Didactical structures as an outcome
of research on teaching-learning sequence. International Journal of
Science Education, 26(5), 537-554.
Linn, M. C., & Songer, N. B. (1991). Teaching thermodynamics to middle
school students: What are appropriate cognitive demands? Journal of
Research in Science Teaching, 28, 885-918.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations
among representations in mathematics learning and problem solving.
In: Janvier C. (Ed.) Problems of representation in the teaching and
learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum
Associates.33-40.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right
questions? Educational Psychologist, 32, 1-19
Morecroft, J. D. W., & Sterman, J. D. (1994). Modeling for Learning
Organizations. Portland, OR: Productivity Press.
Mortimer, E. F. (1993). The evolution of students' explanations for the
physical state of matter as a change in their conceptual profile.
Paper presented at the European Research in Science Education:
Proceedings of the First PhD Summerschool, Utrecht
Méheut, M. (2004). Designing and validating two teaching-learning
sequences about particle models. International Journal of Science
Education, 26(5), 605-618.
Méheut, M., & Psillos, D. (2000). Designing and validating
teaching-learning sequences in a research perspective. Paper
presented at the An International Symposium, Paris.
Méheut, M., & Psillos, D. (2004). Teaching-learning sequences: Aims and
tools for science education research. International Journal of
Science Education, 26(5), 515-535.
Mintzes, J. H. Wandersee & J. D. Novak (Eds.), Teaching science for
understanding: A human constructivist view. San Diego: Academic
Press.
Norman, D. A. (1983). Some observations on mental models. In Gentner,
D.& Stevens, A. (Eds.), Mental models (15-34). Hillsdale,
NJ: Lawrence Erlbaum.
Niedderer, H., & Goldberg, F. (1995, 7th - 11th April). Learning pathway
And knowledge construction in electric circuit. Paper presented at
the European Conference on Research in Science Education, Leeds, UK.
Niedderer, H. (1997). Learning process studies in physics: A review of
concepts and results. Paper presented at the American Educational
Research Association, Chicago.
Onno de Jong(2000).Crossing the borders:Chemical education research
And teaching practice.University Chemistry Education 2000,4 (1) .
Peters, H. J. & Daiker, K. C. (1982). Graphics and animation as
Instructional tools. Pipeline, 7 , 11-13.
Park, O. C. & Hopkins, R. (1993). Instructional conditions for using
dynamic visual displays. Instructional Science, 21, 427-449.
Psillos, D., & Méheut, M. (2001). Teaching-learning sequences as a means
for linking research to development. Paper presented at the
Proceedings of the Third International Conference on Science
Education Research in the Knowledge Based Society, Thessaloniki.
Psillos, D., Koumaras, P. & Tiberghien, A. (1988). Voltage presented as
a primary concept on DC circuits. International Journal of Science
Education, 10(1),29-43.
Psillos, D., Koumaras, P., & Valassiades, O. (1987). Students'
representations of electric current before, during and after
instruction on DC circuits. Journal of Research in Science and
Technological Education, 5, 185-189.
Park, O. C. & Gittelman, S. S. (1992). Selective Use of Animation and
Feedback in Computer-Based Instruction. Educational Technology,
Research and Development, 40(4), 27-38.
Paivio, A. (1971).Imagery and verbal processes. New York: Holt,
Rochowicz, J. J. (1996). The Impact of Using Computers and Calculators
On Calculus Instruction: Various Perceptions. Journal of Computers
In Mathematics and Science Teaching 15(4), 387-399.
Roberts, D. L. & Stephens, L. J. (1999). The Effect of the Frequency of
Usage of Computer Software in High School Geometry. Journal of
Computers in Mathematics and Science Teaching. 18(1), 23-30.
Rieber, L. P. (1990). Animation in computer based instruction. ETR&D,
38(1), 77-86.
Rieber, L. P., Boyce, M. J., & Assad, C. (1990). The effects of computer
animation on adult learning and retrieval tasks. Journal of
Computer-Based Instruction, 17(2), 46-52.
Rigney, J. W. & et Lutz, K. A. (1976). Effect of graphic analogies of
Concepts in chemistry on learning and attitude. Journal of
Educational Psychology, 68 (3), 305-311.
Rieber, L. P. (1989). A Review of Animation research in Computer-based
Instruction. In Proceedings of Selected Research Papers presented
At the Annual Meeting of the Association for Educational
Communications and Technology. Dallas, Texas.
Rieber, L. & Hannafin, M. (1988). The effects of textual and animated
orienting activities and practice on learning from computer based
instruction. Computers in the Schools, 5, 77-89.
Rieber, L. P. (1990). Animation in computer based instruction. ETR&D,
38(1), 77-86.
R. (Ed.). Cognitive models of science: Minnesota studies in the philosophy
of science (pp. 129–186). Minneapolis: University of Minnesota
Press.
Rinehart & Winston. National Council of Teachers of Mathematics. (1998).
Principles and Standards for School Mathematics: Discussion Draft.
Rohr, M., & Reimann, P. (1998). Reasoning with multiple representations
when acquiring the particulate model of matter. In M. W. V. Someren,
P. Reimann, H. P. A. Boshuizen & T.
Schnotz, W. (2002) Towards an integrated view of learning from text and
visual displays,Educational Psychology Review, 14 (1), pp. 101-120.
Sales, G. C. & Williams, M. D. (1988). The effect of adaptive control of
feedback in computer-based instruction. Journal of Research in
Computing in Education, 21 (1), 97-111.
Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997).
A multidimensional framework for interpreting conceptual change
events in the classroom. Science Education, 81, 387-404.
Tytler, R. (1998). Children's conceptions of science education.
International Journal of Science Education, 20(8), 929-958.New York :
Vintage Books.
Thiis, G. D. (1992). Evaluation of an introductory course on 'force'
Considering students' preconceptions. Science Education, 76(2),
155-174.
Treagust, D. F. (1988). Development and use of diagnostic tests to
evaluate students’ misconceptions in science. International
Journal of Science Education, 10(2), 159-169.
Treagust, D. F. (1995). Diagnostic assessment of students’ science
knowledge. In S. M. Glynn, & R. Duit. (Eds.), Learning science in
the schools: Research reforming practice, 327-346. New Jersey:
Lawrence Erlbaum Associates.
Treagust, D. F., Harrison, A., Venville, G., & Dagher, Z. (1996). Using
an analogical teaching approach to engender conceptual change.
International Journal of Science Education, 18, 213-229.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study
Of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual
Change [special issue]. Learning and Instruction, 4, 45-69.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study
Of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
Vosniadou, S., & Ioannides, C. (1998). From conceptual development to
Science education: A psychological point of view. International
Journal of Science Education, 20(10), 1213-1230.
Vosniadou, S., & Ioannides, C. (2001). Designing learning environments
to promote conceptual change in science. Learning and Instruction.,
11, 381-419.
Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing
and ways of reasoning in elementary astronomy. Cognitive Development,
19, 203-222
W Schnotz, J Böckheler, H Grzondziel (1999)- European Journal of
Psychology of Education, Individual and co-operative learning with
interactive animated pictures
White, R., & Gunstone, R. (1992). Probing understanding. London: Falmer
Press.
White, B. Y. & Frederiksen, J. R. (1990). Causal model progressions as
a foundation for intelligent learning environments. Artificial
Intelligence, 42, 99-157.
Winn, B.(1987). Charts, graphs, and diagrams in educational materials.
The Psychology of Illustration, Vol.1:Basic Research, 152-198.
W,H.K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual
understanding of chemical representations: students' use of a
visualization tool in the classroom. Journal of Research in Science
Teaching, 38, 821-842