研究生: |
韓同耀 Han, Tong-Yao |
---|---|
論文名稱: |
以超快雷射製作石墨烯/二硫化鉬元件結構於氣體檢測 Using Ultra-Fast Laser to Fabricate Graphene/MoS₂ Device Structures for Gas Detection |
指導教授: |
張天立
Chang, Tien-Li |
口試委員: |
王建評
Wang, Chien-Ping 李亞偉 Lee, Ya-Wei 林鼎晸 Lin, Ding-Zheng 張天立 Chang, Tien-Li |
口試日期: | 2021/07/09 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 超快雷射 、石墨烯 、加熱感測元件 、氣體感測 、二硫化鉬 |
英文關鍵詞: | Ultrafast laser processing technique, Graphene, MoS₂, Heating sensing device, Gas detection |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100631 |
論文種類: | 學術論文 |
相關次數: | 點閱:114 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 溫衛敏室內有毒氣體監測研究,西安科技大學 (2008).
[2] Gas sensor market size, share & trends analysis by product, by technology, by end use (medical, environmental, petrochemical, automotive, industrial, agriculture, others), by region, and segment forecasts, Market Research Report (2019).
[3] G. Neri, First fifty years of chemoresistive gas sensors, Chemosensors, Vol.3, 1-20 (2015).
[4] CNT gas sensors, Alpha Szenszor (2016).
[5] T. T. Tung, M. Nine, M. Krebsz, T. Pasinszki, C.J. Coghlan, D. N. H. Tran, D. Losic, Recent advances in sensing applications of graphene assemblies and their composites, Graphene Assemblies, Vol. 27, 1702891 (2017).
[6] 謝孟玹. 產業技術分析偵測PM2.5與空氣污染的關鍵之鑰-氣體感測器,經濟部技術處 (2015).
[7] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice, Materials Science and Engineering: B, Vol. 139, pp. 1-23 (2007).
[8] C. Momma, B.N. Chichkov, S. Nolte, F.V. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen, Short-pulse laser ablation of solid targets, Optics Communications, Vol. 129, 1343-142 ( 1996).
[9] S. Dadashi, H. Delavari, R. Poursalehi, Optical properties and colloidal stability mechanism of bismuth nanoparticles prepared by Q-switched Nd:Yag laser ablation in liquid, Procedia Materials Science, Vol. 11, 679-683 ( 2015 )
[11] K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing review, Science & Applications, Vol. 14, 1-12 (2014).
[12] P. R.Wallace, The band theory of graphite. Physical Review, 1947, Vol. 71, 622.
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, Electric field effect in atomically thin carbonfilms, Science, Vol. 306, 666-669 (2004).
[14] K. S. Novoselov, Z. Jiang , Y. Zhang .Room-temperature quantum Hall effect ingraphene, Science, Vol. 315, 1379-1379 (2007).
[15] W. Krätschmer, L. D. Lamb, K. Fostiropoulos. C60: a new form of carbon. Nature, 1990, 347, 354-358.
[16] S. Iijima, Helical microtubules of graphitic carbon. Nature, Vol. 354, 56-58 (1991).
[17] D. Hisamoto, W. C. Lee,J Kedzierski. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices, Vol. 47, 2320-2325 (2000).
[18] Y. K. Choi, K. Asano, N. Lindert, Ultra-thin body SOI MOSFET for deep-sub-tenthmicron era. IEEE Intertional Electron Devices Meeting (IEDM 99), 919-921 (1999).
[19] M. C. Lemme,T J Echtermeyer, M. Baus . Mobility in graphene double gate field effect transistors. Solid-State Electronics, Vol. 52, 514-518 (2007).
[20] W. Arden, M. Brillouët , P. Cogez. More than-Moore white paper. Version, Vol. 2, 14 (2014)
[21] Graphene composites: introduction and market status, Graphene-Info: the graphene experts (2016).
[22] A. K. Sundramoorthy, T. H. V. Kumar, S. Gunasekaran, Graphene-based nanosensors and smart food packaging systems for food safety and quality monitoring, Graphene Nanosensors & Smart Food Packaging, Vol. 12, 267-306 ( 2018 ).
[23] 賀淩翔. 基於MEMS工藝的氣體感測器微熱板設計、製作與測試. 深圳:深圳大學 (2018).
[24] 楊昆. MEMS微型加熱器的設計及應用研究. 北京:北京交通大學 (2015).
[25] M. Lim, H. Kim, E. H. Ko, Ultrafast laser-assisted selective removal of self-assembled Ag network electrodes for flexible and transparent film heaters. Journal of Alloys and Compounds, Vol. 688, 198-205 (2006).
[26] X. M. Lv, J. Liu, S. Wang, Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating. Applied Surface Science A, Journal Devoted to the Properties of Interfaces in Relation to the Synthesis & Behaviour of Materials, Vol. 366, 227-232 (2016).
[27] W. Zhang, Z. Shi, C. Chen, Super-resolution GaAs nano-structures fabricated by laser direct writing, Materials Science in Semiconductor Processing, Vol. 84, 119-123 (2018).
[28] D. H. Kam, J. Kim, J. Mazumder. Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon, Journal of Manufacturing Processes, Vol. 35, 99-106 (2018).
[29] S. Xu, L. Ren, B. Liu, Single-step selective metallization on insulating substrates by laser-induced molten transfer, Applied Surface Science, Vol 454, 16-22 (2018).
[30] B. Sohn, Hun-Kook Choi, Dongyoon Yoo, Three-dimensional hologram printing by single beam femtosecond laser direct writing, Applied Surface Science, Vol. 427, 396-400 (2018).
[31] W. Ma, P. Zhang, W. Zhou, Femtosecond-laser direct-writing volume phase gratings inside Ge–As–S chalcogenide glass, Ceramics International, Vol. 46, 17599-17605 (2020).
[32] L. C. Wang, K. T. Tang, S. W. Chiu. A bio-inspired two-layer multiple-walled carbonnanotube-polymer composite sensor array and a bio-inspired fast-adaptive readout circuit foraportable electronic nose, Biosensors and Bioelectronics, Vol. 26, 4301-4307 (2011).
[33] X. P. Li, J. H. Cho, P. Kurup. Novel sensor array based on doped tin oxide nanowiresfororganic vapor detection, Sensors and Actuators B: Chemical, Vol. 162, 251-258 (2012).
[34] V. Guidia, M. C. Carotta, B. Fabbri. Array of sensors for detection of gaseous malodorsinorganic decomposition products, Sensors and Actuators B: Chemical, Vol. 174, 349-354 (2012).
[35] J. Fonollosa, L. Fernández, R. Huerta, Temperature optimization of metal oxidesensorarrays using Mutual Information, Sensors and Actuators B: Chemical, Vol. 187, 331-339 (2013).
[36] J. Fonollosa, I. R. Lujan, A. V. Shevade, Human activity monitoring using gasse nsorarrays, Sensors and Actuators B: Chemical, Vol. 199, 19398-402 (2014).
[37] X. Du, I. Skachko, A. Barker. Approaching ballistic transport in suspended graphene, Nature Nanotechnology, Vol. 3, 491-495 (2008).
[38] A. A. Balandin, S. Ghosh, W. Bao, Superior thermal conductivity of single-layer graphene. Nano Letters, Vol.8, 902-907 (2008).
[39] S. Ghosh, I. Calizo, D. Teweldebrhan. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, Vol. 92, 15191-3 (2008).
[40] J. H. Seol, I. Jo, A. L. Moore, Two-dimensional phonon transport in supported graphene Science, Vol. 328, 213-216 (2016).
[41] J. Hu, X. Ruan , Y. P. Chen, Thermal conductivity and thermal rectification in grapheme nanoribbons: a moleculuar dynamics study. Nano Letters, Vol. 9, 2730-2735 (2009).
[42] N. Yang, G. Zhang, B. Li. Thermal rectification in asymmetric graphene ribbons. Applied Physics Letters, Vol. 95, 033107 (2009).
[43] Z. Yan, G. Liu, Khan J M, Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, Vol. 3, 827 (2012).
[44] N. Han, T. V. Cuong, M. Han. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nature Communications, Vol. 4, 1452 (2013).
[45] Z. Gao, Y. Zhang, Y. Fu. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, Vol. 61, 342-348 (2013).
[46] F. Schedin, A. K. Geim, S. V. Morozov, E. V. Hill, P. Blake M. I. Katsnelson, K. S. Novose, Detection of individual gas molecules adsorbed on graphene, Nature Materials, Vol. 6, 652 655 (2007).
[47] Z. Ye, H. Tai, T. Xie, Y. Sun, Z. Yuan, C. Liu, Y. Jiang, A facile method to develop novel TiO2/rGO layered film sensor for dete cting ammonia at room temperature, Materials Letters, Vol. 165, 127-130 (2016).
[48] H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, M. M. Cheng Cheng, Carbon dioxide gas sensor using a graphene sheet, Sensors & Actuators B Chemical, Vol. 157, 310-313 (2011).
[49] G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, Jaehyun Kim,Graphene based nitrogen dioxide gas sensors, Current Applied Physics , Vol. 10, 1002- 1004 (2010).
[50] J. Hassinen, J. Kauppila, J. Leiro, A. Maattanen, Low cost reduced graphene oxide basedconductometric nitrogen dioxide sensitive sensor on paper, Analytical and Bioanalytical Chemistry, Vol. 405, 3611-3617 (2013).
[51] 蘇世闖. MoS2/ZnO複合結構製備及光學性質研究. 長春: 長春理工大學 (2018).
[52] 陸小龍. 層狀鉬化合物納米複合材料的氫氣氣敏和應變特性研究. 哈爾濱: 哈爾濱工業大學 (2017).
[53] 張亨, 奈米二硫化鉬的製備及性質研究進展.中國鉬業, 39, 5(2015).
[54] 黃飛, 趙輝, 馮昊, 二硫化鉬納米材料在化學電源中的研究進展, 新能源進展, 375-383 (2015).
[55] D. Merki, X. Hu, Recent developments of molybdenum and tungstensulfides as hydrogen evolution catalysts, Energy & Environmental Science, Vol. 4: 3878-3888 (2011).
[56] K. Dolui, C. D. Pemmaraju, S. Sanvito, Electric fieldeffects on armchair MoS 2 nanoribbons, Acs Nano, Vol. 6: 4823-4834 (2013).
[57] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jerniganand, B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Letters, Vol. 13, 668-673 (2012).
[58] E. Lee, S. Lee, N. Heo, G. D. Stucky, Y. S. Jun, WonhiHong. A fluorescent sensor for selec tive detection of cyanide usingmesoporous graphitic carbon(IV) nitride, Chemical Communications, Vol. 48 , 3942-3944 (2012).
[59] W. Park, J. Park, Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors, Nanotechnology, Vol. 24, 095202 (2013).
[60] S. M. Cui, Z. H. Wen, Stabilizing MoS2 Nanosheets through SnO2 Nanocrystal Decoration for High-Performance Gas Sensing in Air. Small, Vol. 11, 2305-2313 (2015).
[61] C. Kuru, C. Choi, A. Kargar, MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen, Advanced Science, Vol. 2, 1500004 (2015).
[62] Y. Niu, R. Wang, MoS2 graphene fiber based gas sensing devices, Carbon, Vol. 95, 34-41 (2015).
[63] H. H. Yan, P. Song, S. Zhang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets, Journal of Alloys and Compounds, Vol. 662, 118-125 (2016).
[64] I. Kiju, K. Cho, J. Kim, Transparent heaters based on solution-processed indium tin oxide nanoparticles, Thin Solid Films, Vol. 518, 3960-3963 (2010).
[65] T. Y. Kim, Y. W. Kim, H. S. Lee, Uniformly interconnected silver-nanowire networks for transparent film heaters, Advanced Functional Materials, Vol. 23, 1250-1255 (2012).
[66] C. Celle, C. Mayousse, E. Moreau, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, Vol. 5, 427-433 (2012).
[67] S. Ye, A. R. Rathmell, Z. Chen, Metal Nanowire Networks: The Next Generation of Transparent Conductors, Advanced Materials, Vol. 26, 6670-6687 (2014).
[68] A. Venkatasubramanian, J. H. Lee, Vi. Stavila, Design optimization for high sensitivity chemical detection, Sensors & Actuators B Chemical, Vol. 168, 256-262 (2012).
[69] B. Nemeth, M. S. Piechocinski, R.S. Cumming. High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging, Sensors & Actuators B Chemical, Vol. 171,747-752 (2012).
[70] M. Righettoni, A. Tricoli, S. Gass, Breath acetone monitoring by portable Si:WO3 gas sensors, Analytica Chimica Acta, Vol. 738: 69-75 (2012).
[71] A. Pike, J. W. Gardner, Thermal modelling and characterisation of micropower chemoresistive silicon sensors, Sensors & Actuators B Chemical, Vol. 45, 19-26 (1997).
[72] M. Baroncini, P. Placidi, G.C. Cardinali, Thermal characterization of a microheater for micromachined gas sensors, Sensors & Actuators A Physical, Vol. 115,8-14 (2004).
[73] W. Y. Chang, Y. S. Hsihe, Multilayer microheater based on glass substrate using MEMS technology, Microelectronic Engineering, Vol. 149, 25-30 (2016).
[74] Z. X. Cai, X. Y. Zeng, J. Duan, Fabrication of platinum microheater on alumina substrate by micro-pen and laser sintering, Thin Solid Films, Vol. 519, 3893-3896 (2011).
[75] U. Schmid, H. Seidel, Enhanced stability of Ti/Pt micro-heaters using a-SiC:H passivation layers. Sensors & Actuators A Physical, Vol. 130, 194-201 (2006).
[76] J. Ederth, P. Johnsson, G. A, Niklasson, Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles, Physical Review B, Vol. 68, 155410 (2003).
[77] T. Y. Zhang, H. M. Zhao, D.Y. Wang, A super flexible and custom-shaped graphene heater, Nanoscale, Vol. 9, 14357-14363 (2017).
[78] S. Y. Lin, T. Y. Zhang, Q. Lu, High-performance graphene-based flexible heater for wearable applications, Rsc Advances, Vol.7, 27001-27006 (2017).
[79] R. Marco, J. Francisco, Alfonso Salinas-Castillo, Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates, Carbon, Vol. 144, 116-126 (2018).
[80] G. Pal, A. Dutta, K. Mitra, M.S. Grace, A. Amat, T. B. Romanczyk, X. J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes, Photochem Photobiol B, Vol. 86, 252-261 (2007).
[81] 張天立、鄧敦建. 國立臺灣師範大學雷射工程技術與應用課程講義 (2019).
[82] R. Phatthanakun, P. Deekla, W. Pummara, N. Chomnawang Fabrication and control of thin-film aluminum microheater and nickel temperature sensor. Electrical Engineering/Electronics, Computer, Vol. 10,1109 (2011).
[83] 楊世銘. 傳熱學. 北京:高等教育出版社 (2006).
[84] 候鎮冰. 固體熱傳導. 上海:上海科學技術出版社 (1984).
[85] V. S. Abaz, P. S. Larson, 對流換熱. 北京:高等教育出版社 (1992).
[86] 金亞秋. 電磁散射和熱輻射的遙感理論. 北京:科學出版社 (1993).
[87] E. Whittaker, History of the Theories of Aether and Electricity. Soil ence, Vol. 77,417 (1951).
[88] D. H. Perkins, R. Carlitz, Introduction to high energy physics, Physics Today, Vol. 26, 55-57(1973).
[89] 《中國電力百科全書》編輯委員會, 中國電力出版社《中國電力百科書編輯部. 中國電力百科全書:電工技術基礎卷. 北京:中國電力出版社 (2014).
[90] 閻金鐸.中國中學教學百科全書:物理卷. 瀋陽:瀋陽出版社 (1990).
[91] 鄭青嶽.焦耳定律教材中兩個公式推導的修正. 物理教師.
[92] L. Xu, T. Li, X L. Gao, A high-performance three-dimensional microheater-based catalytic gas sensor, Electron Device Letters, IEEE, Vol. 33, 284-286 (2012).
[93] L. Xu, Tie Li, Y. Wang. A novel three-dimensional microheater, IEEE Electron Device Letters, Vol. 32, 1284-1286 (2011).
[94] G. Velmathi, N. Ramshanker, M. S. Design, Electro-Thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing. IEEE, (2010).
[95] L. Xu, Y. Wang, H. Zhou, Design, Fabrication, and characterization of a high-heating-efficiency 3-D microheater for catalytic gas sensors, Journal of Microelectromechanical Systems, Vol. 21, 1402-1409 (2012).
[96] 韓東彥, 銀奈米線和聚二甲基矽氧烷複合材料的柔性薄膜加熱器蘭州:蘭州大學 (2019).
[97] J. P. Li, J. J. Liang, X. Jian, A Flexible and Transparent Thin Film Heater Based on a Silver Nanowire/Heat‐resistant Polymer Composite. Macromolecular Materials & Engineering, Vol. 299, 1403-1409 (2015).
[98] S. Hong, H. Lee, J. Lee, Highly sretchable and transparent metal nanowire heater for wearable electronics applications, Advanced Materials, Vol. 27, 4744-4751 (2015).
[99] 宋天霞. 有限元理論及應用基礎教程. 北京:科學出版社 (1993).
[100] L. Logan, L. Dary, 伍義生, 吳永禮譯. 有限元方法基礎教程 (2007).
[101] H. John, R. W. Clough, M. J. Turner, Early history of the finite element method from the view point of a pioneer, International Journal for Numerical Methods in Engineering, Vol. 60, 283-287 (2004).
[102] R. W. Clough. Thoughts about the origin of the finite element method. Computers & Structures, Vol.79, 2029-2030 (2001).
[103] G. Velmathi, N. Ramshanker, S. Mohan, 2D Simulations and electro-thermal analysis of micro-heater designs using COMSOLTM for gas sensor applications, COMSOL Conference I (2010).
[104] L. Sujatha, V. S. Selvakumar, S. Aravind, Design and analysis of micro-Heaters for Temperature optimization using COMSOL multiphysics for mems based gas sensor, proceedings COMSOL conference in bangalore (2012).
[105] N. Dufour, C. Wartelle, P. Menini. 3D stationary and temporal electro-thermal simulations of metal oxide gas sensor based on a high temperature and low power consumption micro-heater structure using COMSOL, International Comsol Conference (2012).
[106] 王剛. COMSOL Multiphysics工程實踐與理論模擬—多物理場數值分析技術. 北京:電子工業出版社 (2012).