簡易檢索 / 詳目顯示

研究生: 呂學信
Lu, Hsueh-Hsin
論文名稱: 基於多目標決策與可變空間理論之液晶顯示器工廠產能與利潤最大化
The MODM and Changeable Space Theories Based Capacity Reconfiguration for Improving Capacity and Profit of LCD Fabs Toward Aspired Levels
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 80
中文關鍵詞: 中小尺寸面板廠產能規劃De Novo 規劃法可變空間法
英文關鍵詞: small and medium size TFT-LCD fab, capacity planning, De Novo Programming, Changeable Space
DOI URL: https://doi.org/10.6345/NTNU202204232
論文種類: 學術論文
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於智慧型手持設備的快速演變及發展中小尺寸薄膜電晶體液晶顯示器(TFT-LCD)面板市場近年來成長迅速,市場佔有率已達全球薄膜電晶體液晶顯示器面板市場的25%。然而,需求與供給關係由於激烈競爭的,市場波動劇烈,因此,薄膜電晶體液晶顯示器 面板市場的生產設施供應商與工廠配置需要有適合的評估機制以求生產效率及獲利最大化。
    儘管有許多學者研究如何去選擇合適的中小尺寸面板供應廠商或優化面板工廠生產以求效率最佳,但,鮮有學者探討如何同步將中小尺寸面板廠的獲利以及產能最大化。而於中小尺寸面板研究中,更少有學者使用可變空間(Changeable Space) 中小尺寸面板廠設備配置進行重組,透過外部資源以解決工廠面臨到擴產、生產效率無法最佳化等問題。因此,本論文定義一基於多目標決策(MODM)之混合架構,解決前述問題。本研究將以混合多目標決策架構擴選擇面板設備,並導入基於多變空間理論之多目標決策(MODM)架構將設備配置最適化。本研究對中小尺寸的面板廠主要貢獻為幫助廠商重新思考如將以我國中小尺寸薄膜電晶體液晶顯示器工廠進行產能調配已達到生產效率最大化,以及獲利最大化。未來,本證研究結果將可作為中小尺寸薄膜電晶體面板工廠設備規劃之基礎。

    The small and medium size thin film transistor liquid crystal display (TFT-LCD) panel market, which accounted for 25% of the worldwide TFT-LCD market, surged rapidly during the past years due to the fast evolution of the smart handheld devices. However, the demand versus supply relation fluctuated significantly due to the fierce competitions in the small and medium size TFT LCD market. The appropriate expansion of the facilities and optimal allocation of the manufacturing of the manufacturing facilities require an ideally evaluation mechanism. Further, how the production can be configured to be capacity maximization and profit maximization is the main contribution in this research. However, almost no scholars tried to introduce the theory of the changeable space for reconfiguring and appropriating the production capacity. Further, almost no scholars studied the above-mentioned issues for the small and medium TFT-LCD fabs. Hence, the author aims to define a multiple objective decision making (MODM) theories and methods based hybrid framework for resolving the problems. A changeable space theory based MODM framework consisting the De Novo programming technique will be introduced for appropriating and expanding the capacity of a TFT-LCD fab. The main contribution of this research is giving the small and medium size TFT-LCD Corporation’s new thinking when setting the strategies for expand the capacity. In the future, the proposed framework can be used for appropriating the production capacity of any plan, and the results can be used as the basis for appropriating the capacity of a TFT-LCD fab.

    Table of Contents 摘要 i Abstract ii Table of Contents iii List of Table v List of Figure vi Chapter 1 Introduction 1 1.1. Research Backgrounds 1 1.2. Research Motivations 2 1.3. Research Purposes and Limitations 4 1.4. Research Method and Framework 6 Chapter 2 Literature Review 9 2.1 Capacity Planning 9 2.2 Changeable and Reconfigurable Manufacturing 15 2.3 Changeable Space Programming and Decision Making 22 Chapter 3 Research Method 27 3.1 Multi-Objective Decision Making 27 3.2 Optimal System Design and De Novo Programming 33 3.3 Formulation of Final Testing Capacity Planning Optimization 35 3.4 Changeable Space Programming Formulation 36 Chapter 4 Empirical Study 43 4.1 Solving De Novo Programming 43 4.2 MOP with Changeable Parameters 58 Chapter 5 Discussion 67 5.1 Managerial Implications 71 5.2 Difference between De Novo Programming and Changeable Space 72 Chapter 6 Conclusion 75 References 77 List of Table Table 3-1 A payoff table of STEM 30 Table 4-1 The total product portfolio and product production limitation 45 Table 4-2 The STEM payoff table of 50 Table 4-3 The STEM payoff table of 51 List of Figure Figure 1-1. Global mobile shipments by type, 2008-2018...................................2 Figure 1-2. TFT-LCD manufacturing process 5 Figure 1-3. Research Framework. 7 Figure 2-1. Steps to define change objects. 17 Figure 3-1. A taxonomy of methods for the MODM. 29 Figure 3-2. The feasible options using (a) linear programming and (b) De Novo programming. 34 Figure 3-3. Trade-offs elimination from a given system. 39 Figure 3-4. Aspiration level based on the best improvement rules among inter-relationship 42 Figure 4-1. Basic concept of the desired point. 57 Figure 5-1. Capacity and profit ideal point. 69 Figure 5-2. Changeable spaces for achieving the desired point. 70 Figure 5-3. The relationship between the models. 72

    Azab, A., & AlGeddawy, T. (2012). Simulation methods for changeable manufacturing. Procedia CIRP, 3(1), 179-184.
    Berman, O., Ganz, Z., & Wagner, J. M. (1994). A stochastic optimization model for planning capacity expansion in a service industry under uncertain demand. Naval Research Logistics (NRL), 41(4), 545-564.
    Chen, J. K. C., & Tzeng, G.-H. (2009). Perspective strategic alliances and resource allocation in supply chain systems through the De Novo programming approach. International Journal of Sustainable Strategic Management, 1(3), 320-339.
    Chen, T.-L., Lin, J. T., & Fang, S.-C. (2010). A shadow-price based heuristic for capacity planning of TFT-LCD manufacturing. Journal of Industrial and Management Optimization, 6(1), 209-239.
    Chen, Y.-Y., Chen, T.-L., & Liou, C.-D. (2013). Medium-term multi-plant capacity planning problems considering auxiliary tools for the semiconductor foundry. The International Journal of Advanced Manufacturing Technology, 64(9-12), 1213-1230.
    Chianglin, C. Y., Lai, T. C., & Yu, P. L. (2007). Linear Programming Models With Changeable Parameters—Theoretical Analysis On “Taking Loss At The Ordering Time And Making Profit At The Delivery Time”. International Journal of Information Technology & Decision Making, 6(04), 577-598.
    Evans, L., Lohse, N., & Summers, M. (2013). A fuzzy-decision-tree approach for manufacturing technology selection exploiting experience-based information. Expert systems with applications, 40(16), 6412-6426.
    Gumasta, K., Kumar Gupta, S., Benyoucef, L., & Tiwari, M. K. (2011). Developing a reconfigurability index using multi-attribute utility theory. International Journal of Production Research, 49(6), 1669-1683.
    Huang, J.-J., & Tzeng, G.-H. (2014). New thinking of multi-objective programming with changeable space–in search of excellence. Technological and Economic Development of Economy, 20(2), 254-273.
    Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2005). Motivation and resource-allocation for strategic alliances through the DeNovo perspective. Mathematical and Computer Modelling, 41(6), 711-721.
    Karabuk, S., & Wu, S. D. (2003). Coordinating strategic capacity planning in the semiconductor industry. Operations Research, 51(6), 839-849.
    Koren, Y., Pasek, Z. J., Ulsoy, A. G., & Benchetrit, U. (1996). Real-time open control architectures and system performance. CIRP Annals-Manufacturing Technology, 45(1), 377-380.
    Lambrechts, F., Grieten, S., Bouwen, R., & Corthouts, F. (2009). Process Consultation Revisited Taking a Relational Practice Perspective. The Journal of Applied Behavioral Science, 45(1), 39-58.
    Laperrire, L., & Reinhart, G. (2014). CIRP Encyclopedia of Production Engineering: Springer Publishing Company, Incorporated.
    Larbani, M., & Yu, P. L. (2012). Decision making and optimization in changeable spaces, a new paradigm. Journal of Optimization Theory and Applications, 155(3), 727-761.
    Liou, J. J. H., & Tzeng, G.-H. (2012). Comments on “Multiple criteria decision making (MCDM) methods in economics: an overview”. Technological and Economic Development of Economy, 18(4), 672-695.
    Martínez-Costa, C., Mas-Machuca, M., Benedito, E., & Corominas, A. (2014). A review of mathematical programming models for strategic capacity planning in manufacturing. International Journal of Production Economics, 153, 66-85.
    Olhager, J., Rudberg, M., & Wikner, J. (2001). Long-term capacity management: Linking the perspectives from manufacturing strategy and sales and operations planning. International Journal of Production Economics, 69(2), 215-225.
    Renna, P. (2010). Capacity reconfiguration management in reconfigurable manufacturing systems. The International Journal of Advanced Manufacturing Technology, 46(1-4), 395-404.
    Renzi, C., Leali, F., Cavazzuti, M., & Andrisano, A. O. (2014). A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. The International Journal of Advanced Manufacturing Technology, 72(1-4), 403-418.
    Verter, V., & Dincer, M. C. (1992). An integrated evaluation of facility location, capacity acquisition, and technology selection for designing global manufacturing strategies. European Journal of Operational Research, 60(1), 1-18.
    Verter, V., & Dincer, M. C. (1995). Facility location and capacity acquisition: an integrated approach. Naval Research Logistics, 42(8), 1141-1160.
    Wang, K. J., Wang, S. M., & Yang, S. J. (2007). A resource portfolio model for equipment investment and allocation of semiconductor testing industry. European Journal of Operational Research, 179(2), 390-403.
    Wang, K. J., Wang, S. M., & Yang, S. J. (2007). A resource portfolio model for equipment investment and allocation of semiconductor testing industry. European Journal of Operational Research, 179(2), 390-403.
    Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., & Brieke, M. (2007). Changeable manufacturing-classification, design and operation. CIRP Annals-Manufacturing Technology, 56(2), 783-809.
    Wu, S. D., Erkoc, M., & Karabuk, S. (2005). Managing capacity in the high-tech industry: A review of literature. The Engineering Economist, 50(2), 125-158.
    Yigit, A. S., & Allahverdi, A. (2003). Optimal selection of module instances for modular products in reconfigurable manufacturing systems. International Journal of Production Research, 41(17), 4063-4074.
    Yu, P.-L., & Chen, Y.-C. (2010). Blinds, fuzziness and habitual domain tools in decision making with changeable spaces. Human Systems Management, 29(4), 231-242.
    Yu, P.-L., & Chen, Y.-C. (2012). Dynamic multiple criteria decision making in changeable spaces: from habitual domains to innovation dynamics. Annals of Operations Research, 197(1), 201-220.
    Yu, P. L., & Chianglin, C.-Y. (2006). Decision traps and competence dynamics in changeable spaces. International Journal of Information Technology & Decision Making, 5(01), 5-18.
    Zeleny, M. (1998). Multiple criteria decision making: Eight concepts of optimality. Human Systems Management, 17(2), 97-107.
    ZelenÝ, M. (1990). Optimizing given systems vs. designing optimal systems: The De Novo programming approach. International journal of general systems, 17(4), 295-307.

    無法下載圖示 本全文未授權公開
    QR CODE