研究生: |
徐儷文 Hsu, Li-Wen |
---|---|
論文名稱: |
使用全細胞生物感測器在微流道設備中同時測定L-苯丙胺酸、苯乙胺和苯乙酸 Simultaneous Determination of L-phenylalanine, Phenylethylamine, and Phenylacetic Acid Using Whole-cell Biosensors within a Microchannel Device |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 苯丙酮尿症 、全細胞生物感測器 、微流道設備 、苯丙胺酸 、苯乙胺 、苯乙酸 |
英文關鍵詞: | phenylketonuria (PKU), whole-cell biosensor, microchannel devices, phenylalanine (Phe), phenylethylamine (PEA), phenylacetic acid (PA) |
DOI URL: | http://doi.org/10.6345/NTNU202000699 |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Somaraju, U. R.; Merrin, M., Sapropterin dihydrochloride for phenylketonuria. Cochrane Database of Systematic Reviews 2015, (3).
2. Fonnesbeck, C. J.; McPheeters, M. L.; Krishnaswami, S.; Lindegren, M. L.; Reimschisel, T., Estimating the probability of IQ impairment from blood phenylalanine for phenylketonuria patients: a hierarchical meta-analysis. Journal of inherited metabolic disease 2013, 36 (5), 757-766.
3. Blau, N.; van Spronsen, F. J.; Levy, H. L., Phenylketonuria. The Lancet 2010, 376 (9750), 1417-1427.
4. Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Grechanina, E.; Novikov, P.; McDonald, J. D.; Grady, J.; Tyring, S.; Guttler, F., Large neutral amino acids in the treatment of phenylketonuria (PKU). Journal of inherited metabolic disease 2006, 29 (6), 732-738.
5. Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y., The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 2017, 17 (7), 1623.
6. Binder, S.; Schendzielorz, G.; Stäbler, N.; Krumbach, K.; Hoffmann, K.; Bott, M.; Eggeling, L., A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome biology 2012, 13 (5), R40.
7. Dietrich, J. A.; Shis, D. L.; Alikhani, A.; Keasling, J. D., Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS synthetic biology 2013, 2 (1), 47-58.
8. Raman, S.; Rogers, J. K.; Taylor, N. D.; Church, G. M., Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences 2014, 111 (50), 17803-17808.
9. Mustafi, N. Development and application of a single cell biosensor for the intracellular detection of L-methionine and branched-chain amino acids; Biotechnologie: 2014.
10. Santos, C. N. S.; Xiao, W.; Stephanopoulos, G., Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proceedings of the National Academy of Sciences 2012, 109 (34), 13538-13543.
11. Harwood, C. S.; Parales, R. E., The β-ketoadipate pathway and the biology of self-identity. Annual review of microbiology 1996, 50 (1), 553-590.
12. Dı́az, E.; Ferrández, A.; Prieto, M. a. A.; Garcı́a, J. L., Biodegradation of aromatic compounds byEscherichia coli. Microbiol. Mol. Biol. Rev. 2001, 65 (4), 523-569.
13. Shine, J.; Dalgarno, L., Determinant of cistron specificity in bacterial ribosomes. Nature 1975, 254 (5495), 34-38.
14. Koyanagi, T.; Katayama, T.; Suzuki, H.; Kumagai, H., Altered oligomerization properties of N316 mutants of Escherichia coli TyrR. Journal of bacteriology 2008, 190 (24), 8238-8243.
15. Pittard, J.; Camakaris, H.; Yang, J., The TyrR regulon. Molecular microbiology 2005, 55 (1), 16-26.
16. Neuwald, A. F.; Aravind, L.; Spouge, J. L.; Koonin, E. V., AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome research 1999, 9 (1), 27-43.
17. Dreyfus, M., What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? Journal of molecular biology 1988, 204 (1), 79-94.
18. Wang, B.; Kitney, R. I.; Joly, N.; Buck, M., Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature communications 2011, 2 (1), 1-9.
19. Görke, B.; Stülke, J., Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microbiology 2008, 6 (8), 613-624.
20. Johnston, M.; Carlson, M. J. C. S. H. M. A., 5 regulation of carbon and phosphate utilization. 1992, 21, 193-281.
21. Tsien, R. Y., Nobel lecture: constructing and exploiting the fluorescent protein paintbox. Integrative Biology 2010, 2 (2-3), 77-93.
22. Griesbeck, O.; Baird, G. S.; Campbell, R. E.; Zacharias, D. A.; Tsien, R. Y., Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications. Journal of Biological Chemistry 2001, 276 (31), 29188-29194.
23. Campbell, R., Tour O Palmer AE Steinbach PA Baird GS 2002 A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99, 78777882.
24. Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y., A guide to choosing fluorescent proteins. Nature methods 2005, 2 (12), 905-909.
25. Heikal, A. A.; Hess, S. T.; Webb, W. W., Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity. Chemical Physics 2001, 274 (1), 37-55.
26. Rizzo, M. A.; Springer, G. H.; Granada, B.; Piston, D. W., An improved cyan fluorescent protein variant useful for FRET. Nature biotechnology 2004, 22 (4), 445-449.
27. Kaur, H.; Halliwell, B., Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals: measurement of hydroxyl radical formation from ozone and in blood from premature babies using improved HPLC methodology. Analytical biochemistry 1994, 220 (1), 11-15.
28. Meesters, R. J.; Wolfe, R. R.; Deutz, N. E., Application of liquid chromatography-tandem mass spectrometry (LC–MS/MS) for the analysis of stable isotope enrichments of phenylalanine and tyrosine. Journal of Chromatography B 2009, 877 (1-2), 43-49.
29. Yujiao, W.; Guoyan, W.; Wenyan, Z.; Hongfen, Z.; Huanwang, J.; Anjia, C., Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β‐CD and chiral ionic liquid ([TBA][l‐ASP]) as selectors. Biomedical Chromatography 2014, 28 (5), 610-614.
30. Kamruzzaman, M.; Alam, A.-M.; Kim, K. M.; Lee, S. H.; Kim, Y. H.; Kim, G.-M.; Dang, T. D., Microfluidic chip based chemiluminescence detection of L-phenylalanine in pharmaceutical and soft drinks. Food chemistry 2012, 135 (1), 57-62.
31. Hanaoka, S.; Lin, J.-M.; Yamada, M., Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper (II)–amino acid complexes and its application to the determination of tryptophan and phenylalanine. Analytica chimica acta 2000, 409 (1-2), 65-73.
32. Idili, A.; Parolo, C.; Ortega, G.; Plaxco, K. W., Calibration-free measurement of phenylalanine levels in blood using an electrochemical aptamer-based sensor suitable for point-of-care applications. ACS sensors 2019.
33. Robinson, R.; Wong, L.; Monnat, R. J.; Fu, E., Development of a whole blood paper-based device for phenylalanine detection in the context of PKU therapy monitoring. Micromachines 2016, 7 (2), 28.
34. Murugesan, B.; Yang, J., Tunable Coffee Ring Formation on Polycarbonate Nanofiber Film for Sensitive SERS Detection of Phenylalanine in Urine. ACS omega 2019, 4 (12), 14928-14936.
35. Messina, M. A.; Raudino, F.; Fiumara, A.; Conoci, S.; Petralia, S. In A Novel Paper-Based Biosensor for Urinary Phenylalanine Measurement for PKU Therapy Monitoring, Convegno Nazionale Sensori, Springer: 2018; pp 195-200.
36. Kim, M. I.; Park, T. J.; Heo, N. S.; Woo, M.-A.; Cho, D.; Lee, S. Y.; Park, H. G., Cell-based method utilizing fluorescent Escherichia coli auxotrophs for quantification of multiple amino acids. Analytical chemistry 2014, 86 (5), 2489-2496.
37. Lin, C.; Jair, Y.-C.; Chou, Y.-C.; Chen, P.-S.; Yeh, Y.-C., Transcription factor-based biosensor for detection of phenylalanine and tyrosine in urine for diagnosis of phenylketonuria. Analytica chimica acta 2018, 1041, 108-113.
38. Guo, K.-H.; Lu, K.-H.; Yeh, Y.-C., Cell-Based Biosensor with Dual Signal Outputs for Simultaneous Quantification of Phenylacetic Acid and Phenylethylamine. ACS synthetic biology 2018, 7 (12), 2790-2795.
39. Williams, R. A.; Mamotte, C. D.; Burnett, J. R., Phenylketonuria: an inborn error of phenylalanine metabolism. The Clinical Biochemist Reviews 2008, 29 (1), 31.
40. Vermeulen, N.; Gánzle, M. G.; Vogel, R. F., Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1. 468. Journal of Agricultural and Food Chemistry 2006, 54 (11), 3832-3839.
41. Liu, Y.; Zhuang, Y.; Ding, D.; Xu, Y.; Sun, J.; Zhang, D., Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS synthetic biology 2017, 6 (5), 837-848.
42. Chen, Y.-J.; Liu, C.-Y.; Tsai, D.-Y.; Yeh, Y.-C., A portable fluorescence resonance energy transfer biosensor for rapid detection of silver ions. Sensors and Actuators B: Chemical 2018, 259, 784-788.
43. Lin, Y.-K.; Yeh, Y.-C., Dual-signal microbial biosensor for the detection of dopamine without inference from other catecholamine neurotransmitters. Analytical chemistry 2017, 89 (21), 11178-11182.
44. Lin, C.; Zhang, Q.-X.; Yeh, Y.-C., Development of a whole-cell biosensor for the determination of tyrosine in urine for point-of-care diagnostics. Analytical methods 2019, 11 (10), 1400-1404.