簡易檢索 / 詳目顯示

研究生: 康靖坤
KANG, Jing-Kun
論文名稱: 閱讀不同啟蒙例文本及操作不同順序的例子判斷對八年級生學習相似形概念之影響
閱讀不同啟蒙例文本及操作不同順序的例子判斷對八年級生學習相似形概念之影響
指導教授: 楊凱琳
Yang, Kai-Lin
口試委員: 鄭英豪 左台益 楊凱琳
Yang, Kai-Lin
口試日期: 2022/01/12
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 150
中文關鍵詞: 閱讀理解啟蒙例非例例子順序相似形
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200228
論文種類: 學術論文
相關次數: 點閱:144下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於探討不同啟蒙例及不同正非例順序對於學生在學習相似形概念上的影響。一開始讓學生自行閱讀不同啟蒙例文本,並搭配閱讀理解測驗,藉此探討不同「啟蒙例」對「閱讀理解」表現;接著搭配進行不同順序的正非例判斷活動並後測(特殊形的相似判斷、相似形的概念理解),從中探討不同「啟蒙例」及不同「正非例順序」對相似形的「概念理解」之影響。
    本研究採實驗研究法,採便利取樣以北部四所國中、兩所高中國中部共21個八年級班級為研究對象,以「啟蒙例文本」及「正非例判斷的順序」為自變項,分成四組實驗及兩組控制組,將學生隨機指派至各組中。閱讀四邊形啟蒙例文本有三組:一組控制組(N=87);另外兩組有閱讀更詳盡的相似概念文本並搭配閱讀理解測驗外,一組後續搭配正例先於非例的正非例判斷(N=66),一組後續搭配正例非例混和出現的正非例判斷(N=56)。而閱讀三角形啟蒙例文本也有三組:其中控制組(N=94),一組後續搭配正例先於非例的正非例判斷(N=55),一組後續搭配正例非例混和出現的正非例判斷(N=64)。實驗各組各進行一節課。
    研究結果顯示:分成各種程度的學生,「不同啟蒙例文本」與「操作不同順序的正非例判斷」間的交互作用沒有達到顯著效果。
    一、分析「不同啟蒙例文本」對於學生學習相似形概念之影響:
    先備知識程度分為程度低、程度中、程度高的學生,三種程度各自分別討論發現,無論哪種程度的學生,不同啟蒙例文本對學生在各方面的表現均沒有呈現顯著性的差異。
    二、分析「操作不同順序的正非例判斷」對於學生學習相似形概念之影響:
    先備知識程度高的學生中,操作不同順序的正非例判斷對學生沒有顯著影響。先備知識程度中的學生,操作正例先於非例順序的組別,在「正非例判斷表現」顯著低於正例非例混和順序的組別;在「相似形的概念理解」方面,操作正例先於非例順序的組別甚至顯著低於控制組。而先備知識程度低的學生,操作正例先於非例順序的組別,在「正非例判斷表現」顯著低於正例非例混和順序的組別。
    三、分析不同先備知識程度及閱讀時間類型在學習相似形概念之差異:
    依據「閱讀文本時間」、「閱讀理解測驗時間」利用集群分析可以將學生分成三類:「閱讀時間長 (RL)」、「閱讀時間短及閱讀理解測驗時間長(RSTL)」、「閱讀時間短及閱讀理解測驗時間短(RSTS)」。閱讀四邊形文本的學生,「RL」學生在「閱讀理解」、「相似形概念的理解」均顯著高於「RSTS」學生;閱讀三角形文本的學生有相同的結果外,在「正非例判斷」及「特殊形的相似概念判斷」也有相同的結果。而「RSTL」學生在「閱讀理解」、「相似形概念的理解」均顯著高於「RSTS」學生。
    「高先備知識」學生在各方面的表現均顯著優於「低先備知識」學生。閱讀四邊形文本的學生,「中先備知識」學生在「正非例判斷」、「相似形概念的理解」均顯著高於「低先備知識」學生;閱讀三角形文本的學生有相同的結果外,在「閱讀理解」也有相同的結果。「高先備知識」學生僅在「相似形概念的理解」顯著優於「中先備知識」學生。

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 5 第三節 名詞界定 6 第貳章 文獻探討 7 第一節 閱讀理解 7 第二節 例子 14 第三節 相似形 20 第參章 研究設計及方法 25 第一節 研究設計 25 第二節 研究環境 27 第三節 研究流程 28 第四節 研究對象 29 第五節 研究工具 29 第六節 資料的蒐集與分析 49 第肆章 研究結果 53 第一節 不同啟蒙例的文本對各程度的學生之影響 53 第二節 不同啟蒙例文本搭配不同順序的正非例判斷對各程度的學生在正非例判斷之影響 63 第三節 不同啟蒙例文本搭配不同順序的正非例判斷對各程度的學生在相似形概念的理解之影響 68 第四節 分析不同閱讀時間安排對學習概念的影響 81 第伍章 研究結論與建議 100 第一節 研究結論 100 第二節 研究建議 104 參考文獻 107 附錄一、前測作答頁面 120 附錄二、四邊形啟蒙例文本 124 附錄三、三角形啟蒙例文本 128 附錄四、閱讀理解測驗(四邊形版) 132 附錄五、閱讀理解測驗(三角形版) 134 附錄六、四邊形啟蒙例正例先於非例的正非例判斷 136 附錄七、四邊形啟蒙例正非例混合順序的正非例判斷 138 附錄八、三角形啟蒙例正例先於非例的正非例判斷 140 附錄九、三角形啟蒙例正非例混合的正非例判斷 142 附錄十、特殊四邊形及三角形的相似概念判斷 144 附錄十一、後測頁面 145

    Skemp,R.R.(1995).數學學習心理學(陳澤民譯).台北:九章出版社.
    王筱惠. (2011). 相同情境排列組合的對照起始例對高二學生學習的影響. 臺灣師範大學數學系在職進修碩士班學位論文, 1-156.
    古忠平.(2018).整合 Polya 解題策略與閱讀理解之教學成效探究—以因數, 倍數單元為例.臺中教育大學語文教育學系學位論文.1-242
    朱庭瑩. (2020). 探討引導活動對九年級生閱讀盒狀圖文本的內在動機與閱讀理解表現之影響. 臺灣師範大學數學系學位論文, 1-123.
    吳貞祥.(1986).幼兒的數, 量, 空間教育. 幼教天地, 第四期: 1-13.
    呂素娥.(2009).閱讀討論教學對國小四年級學童閱讀理解能力與閱讀態度.國立臺南大學教育學系課程與教學碩士班學位論文
    呂鳳琳. (2010). 幾何證明不同文本呈現方式對學生認知負荷與閱讀理解影響之研究. 臺灣師範大學數學系學位論文, 1-119.
    李健恆. (2012). 結合不同學習策略的工作例對理解幾何證明之影響研究. 臺灣師範大學數學系學位論文, 1-146.
    林世平. (2019). 研發國中生相似形概念的奠基活動. 臺灣師範大學數學系學位論文, 1-82.
    邵光華. (2002). 國外教師壓力研究综述. 比較教育研究, 23(11), 20-24.
    凃金堂. (2011). 運用 [範例 (worked-out example)] 在國小數學問題解決的教學實驗研究. 教育心理學報, 43(1), 25-49.
    柯華葳, & 詹益綾. (2007). 國民中學閱讀推理篩選測驗編製報告. 測驗學刊, 54(2), 429-449.
    洪月女. (2016). 學科閱讀研究與教學之探討. 高雄師大學報: 教育與社會科學類, (40), 19-39.
    徐偉哲.(2020).文本結構教學在閱讀理解成效之後設分析.中正大學教育學研究所碩士學位論文.1-103
    柴筱筠. (2020). 臆測活動融入尺規作圖教學對國中生學習之影響. 臺灣師範大學數學系學位論文, 1-121.
    秦麗花, & 邱上真. (2004). 數學文本閱讀理解相關因素探討及其模式建立之研究-以角度單位為例. 特殊教育與復健學報, (12), 99-121.
    秦麗花. (2006). 從數學閱讀特殊技能看兒童數學閱讀的困難與突破. 特殊教 育 季 刊, 99, 1-12.
    張順良.(2014)探討閱讀不同特徵之幾何尺規作圖與說理文本的理解表現.臺灣師範大學數學系學位論文, 1-225.
    張靜惠.(2011).國小六年級縮圖、放大圖與比例尺單元之二階段電腦化診斷測驗之研發.臺中教育大學數學教育學系在職進修教學碩士學位論文.1-135
    許倖甄. (2012). 國小六年級數學補救教學之行動研究: 以 [小數除法] 及 [分數與小數四則運算] 單元為例. 中正大學課程研究所學位論文, 1-217.
    許倚瑄.(2015).數學閱讀理解融入七年級數學課程教師所面臨的挑戰臺灣師範大學數學系學位論文, 1-123.
    連啟舜.(2002).國內閱讀理解教學研究成效之統合分析研究.國立台灣師範大學教育心理與輔導研究所碩士學位論文。
    郭劉龍.(2004). 數學閱讀能力探析.教學與管理,27,66-67.
    陳世文, & 楊文金. (2006). 以系統功能語言學探討學生對不同科學文本的閱讀理解. 師大學報: 科學教育類, 51(1), 2.
    陳世杰.(2017).國小學童數學文字題解題自我調整學習策略、文字題閱讀理解與文字題解題表現關聯模式之建構與驗證—以因倍數單元為例.高雄師範大學教育學系學位論文.1-262
    陳建亨.(2015).國中九年級學生對相似形的選擇題型與非選擇題型之解題表現.臺灣師範大學數學系學位論文.1-166.
    陳虹君. (2012). 應用閱讀理解理論修改數學文本對小五學生數學概念理解之影響. 中正大學教育學研究所學位論文, 1-147.
    彭曉雯. (2015). 探討合作學習融合閱讀理解應用於國中數學科之教學成效. 樹德科技大學經營管理研究所學位論文, 1-106.
    曾榮華.(2012).臺中市國民中學三年級學生相似形單元錯誤類型之分析研究.臺中教育大學教育學系學位論文.1-85.
    黃文絨. (2009). 反例呈現對立體幾何概念改變之影響. 國立臺北教育大學心理與諮商學系學位論文, 1-125.
    黃佑家, 吳慧敏, 黃暉娟, 譚寧君, 曾世綺, & 曾建銘. (2014). 以工作範例學習平行四邊形面積: 後設認知問題對學習的影響. Taiwan Journal of Mathematics Education, 1(1), 19-47.
    黃梅芳.(2016).探討高二學生閱讀不一致性文本對其閱讀理解表現及機率知識信念上的影響-以期望值為例..臺灣師範大學數學系學位論文, 1-126.
    楊忠璇. (2013). 幾何知識與推理能力對高年級學童幾何圖形概念改變的影響. 臺灣師範大學教育心理與輔導學系學位論文, 1-137.
    歐在連.(2007).國中生數學文本閱讀理解因素及學習成就關聯性探討-----以平方根意義單元為例.高雄師範大學數學系學位論文.1-162
    鄭英豪. (1999). 學生教師數學教學概念的學習: 以 [概念啟蒙例] 的教學概念為例. 臺灣師範大學數學系學位論文, 1-150.
    賴思璇. (2010).以認知負荷來探討兩種自我解釋的範例學習類型對國小六年級學生學習成效的影響. 臺中教育大學數學教育學系學位論文,1-79
    蘇宜芬, & 林清山. (1992). 後設認知訓練課程對國小低閱讀能力學生的閱讀理解能力與後設認知能力之影響. 教育心理學報, (25), 245-267.

    Abbott, A. Gender differences in perceptions of the use of faded worked examples in mathematics.
    Abdul-Rahman, S. (2005). Learning with examples and students’ understanding of integration. Proceedings of the Mathematics Education into the 21st Century Project: Reform, Revolution and Paradigm Shifts in Mathematics Education.
    Akbasli, S., Sahin, M., & Yaykiran, Z. (2016). The Effect of Reading Comprehension on the Performance in Science and Mathematics. Journal of Education and Practice, 7(16), 108-121.
    Albas, C. A., Adler, P., Albas, D. C., Adler, P. A., Altheide, D. L., Altheide, D., ... & Williams, N. (2003). Handbook of symbolic interactionism. Rowman Altamira.
    Alexander, P. A., Kulikowich, J. M., & Jetton, T. L. (1994). The role of subject-matter knowledge and interest in the processing of linear and nonlinear texts. Review of educational research, 64(2), 201-252.
    Alreshidi, N. A. K. (2021). Effects of Example-Problem Pairs on Students' Mathematics Achievements: A Mixed-Method Study. International Education Studies, 14(5), 8-18.
    Ananda, T., & Prabawanto, S. (2020, March). Implementation Inquiry Model with Examples and Non Examples to Enhance The Mathematical Conceptual Understanding of Primary School Students. In International Conference on Elementary Education (Vol. 2, No. 1, pp. 879-888).
    Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of experimental psychology: learning, memory, and cognition, 23(4), 932.
    Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of educational research, 70(2), 181-214.
    Avcu, R. (2014). Exploring middle school mathematics teachers’ treatment of rational number examples in their classrooms: A multiple case study.
    Bartlett, F.C. (1932). Remembering: A study in experimental and social psychology. Cambridge, England: Cambridge University Press.
    Borasi, R., & Siegel, M. (1989). Reading To Learn Mathematics: A New Synthesis of the Traditional Basics.
    Bratina, T. A. (1986). Can your students give examples?. The Mathematics Teacher, 79(7), 524-526.
    Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of educational psychology, 86(3), 360.
    Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and instruction, 8(4), 293-332.
    Charle, R. I. (1980). Exemplification and characterization moves in the classroom teaching of geometry concepts. Journal for Research in Mathematics Education, 11(1), 10-21.
    Cohen, M. P., & Carpenter, J. (1980). The effects of non‐examples in geometrical concept acquisition. International Journal of Mathematical Educational in Science and Technology, 11(2), 259-263.
    Contractor, C. B. (2016). PISA 2018 Reading Literacy Framework.
    Cox, D. C. (2013). Similarity in middle school mathematics: At the crossroads of geometry and number. Mathematical Thinking and Learning, 15(1), 3-23.
    Diakidoy, I. A. N., Mouskounti, T., Fella, A., & Ioannides, C. (2016). Comprehension processes and outcomes with refutation and expository texts and their contribution to learning. Learning and Instruction, 41, 60-69.
    Flores, A., & Yanik, H. B. (2016). Geometric Translations: An Interactive Approach Based on Students' Concept Images. North American GeoGebra Journal, 5(1).
    Fuentes, P. (1998). Reading comprehension in mathematics. The Clearing House, 72(2), 81-88.
    Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational psychology review, 26(1), 9-25.
    Gagne', E. D., Yekovich, C. W. & Yekovich, K. R.(1993). The cognitive
    psychology of schooll earning(2nded.). New York: Harper Collins
    College Publishers.
    Hallinen, N. R., Baldinger, E., & Selling, S. K. THE ROLE OF EXAMPLES & NONEXAMPLES IN DEFINING. SHORT ORAL COMMUNICATIONS, 92.
    Hampton, J. A. (2003). Abstraction and context in concept representation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1435), 1251-1259.
    Heinze, A., Cheng, Y. H., Ufer, S., Lin, F. L., & Reiss, K. (2008). Strategies to foster students’ competencies in constructing multi-steps geometric proofs: Teaching experiments in Taiwan and Germany. ZDM, 40(3), 443-453.
    Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: Learning from heuristic examples and how it can be supported. Learning and Instruction, 18(1), 54-65.
    Kim, S. M., & Jung, E. S. (2005). Building geometrical concepts by using both examples and nonexamples. Journal of Educational Research in Mathematics, 15(4), 401-417.
    Klausmeier, H. J., & Feldman, K. V. (1983). The effects of a definition and a varying number of examples and non-examples on concept attainment (Technical Report No. 280). Madison, WI: Wisconsin Research and Development Center for Cognitive Learning.
    Kober, N. (2003). What special problems do children whose native language is not English face in learning math. Retrieved February, 11, 2005.
    Kollar, I., Ufer, S., Reichersdorfer, E., Vogel, F., Fischer, F., & Reiss, K. (2014). Effects of collaboration scripts and heuristic worked examples on the acquisition of mathematical argumentation skills of teacher students with different levels of prior achievement. Learning and Instruction, 32, 22-36.
    Learning to prove in geometry Learning from heuristic examples and how it can be supported
    Leinhardt, G. (1993). Instructional explanations in history and mathematics. In Proceedings of the fifteenth annual conference of the cognitive science society (pp. 5-16). Hillsdale, NJ: Erlbaum.
    Lin, K. L. Y. F. L., & Wang, Y. T. (2008). The effects of proof features and question probing on understanding geometry proof.
    Lindquist, E. S., & Goodman, R. E. (1994, June). Strength and deformation properties of a physical model melange. In 1st North American Rock Mechanics Symposium. OnePetro.
    Liz, B., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006, July). Exemplification in mathematics education. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 126-154).
    Manson, E., & Ayres, P. (2021). Investigating how errors should be flagged and worked examples structured when providing feedback to novice learners of mathematics. Educational Psychology, 41(2), 153-171.
    Mason, J. (2011). Phenomenology of example construction. ZDM, 43(2), 195-204.
    Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational studies in mathematics, 15(3), 277-289.
    Mason, J., & Watson, A. (2001). Getting students to create boundary examples. MSOR connections, 1(1), 9-11.
    McKenna, M. C., & Robinson, R. D. (2002). Teaching through text: Reading and writing in the content areas. Longman Publishing Group.
    Michener, E. R. (1978). Understanding understanding mathematics. Cognitive science, 2(4), 361-383.
    Mills, M. (2014). A framework for example usage in proof presentations. The Journal of Mathematical Behavior, 33, 106-118.
    Mishnev, S. I., Nikolenko, D. M., Popov, S. G., Richek, I. A., Temnykh, A. B., Toporkov, D. K., ... & Young, L. (1989, May). Polarized deuteron target in an electron storage ring: Measurements and perspectives. In AIP Conference Proceedings (Vol. 187, No. 2, pp. 1286-1301). American Institute of Physics.
    Murphy, G. L. (1993). Theories and concept formation.
    Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognition and instruction, 16(2), 173-199.
    Niss, M. A., & Jensen, T. H. (2002). Kompetencer og matematiklæring: ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriets forlag.
    Olson, M. W., & Gee, T. C. (1991). Content reading instruction in the primary grades: Perceptions and strategies. The Reading Teacher, 45(4), 298-307.
    Österholm, M. (2004, July). Reading mathematical texts: Cognitive processes and mental representations. In ICME-10, The 10th International Congress on Mathematical Education.
    Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational studies in mathematics, 63(3), 325-346.
    Paas, F. G., & Van Merriënboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of educational psychology, 86(1), 122.
    Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional science, 32(1/2), 1-8.
    Perfetti, C., & Curtis, M. (1986). Development of children’s reading self-concepts and their relationship with reading achievement. Journal of Educational Psychology, 87, 155-169.
    Petty, O. S., & Jansson, L. C. (1987). Sequencing examples and nonexamples to facilitate concept attainment. Journal for Research in Mathematics Education, 18(2), 112-125.
    Pressley, M. (2000). What should comprehension instruction be the instruction of?.
    Renkl, A. (2017). Learning from worked-examples in mathematics: students relate procedures to principles. ZDM, 49(4), 571-584.
    Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educational psychologist, 38(1), 15-22.
    Renkl, A., & Atkinson, R. K. (2007). An example order for cognitive skill acquisition. In order to learn: How the sequence of topics influences learning, 95-105.
    Retnowati, E., Ayres, P., & Sweller, J. (2017). Can collaborative learning improve the effectiveness of worked examples in learning mathematics?. Journal of educational psychology, 109(5), 666.
    Rosch, E., & Lloyd, B. B. (Eds.). (1978). Cognition and categorization.
    Ross, B. H., & Spalding, T. L. (1994). Concepts and categories. In Thinking and problem solving (pp. 119-148). Academic Press.
    Rosser, R. A. (1994). Cognitive development: Psychological and biological perspectives. Allyn and Bacon.
    Rowland, T. (2008). The purpose, design and use of examples in the teaching of elementary mathematics. Educational studies in mathematics, 69(2), 149-163.
    Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & writing quarterly, 23(2), 139-159.
    Seago, N., Jacobs, J., Driscoll, M., Matassa, M., & Callahan, M. (2013). Developing teachers' knowledge of a transformations-based approach to geometric similarity. Mathematics Teacher Educator, 2(1), 74-85.
    Selden, A., & Shepherd, M. (2012). TEXT RELEVANCE AND LEARNING FROM UNDERGRADUATE MATHEMATICS TEXTBOOKS.
    Selden, A., & Shepherd, M. D. (2013). The importance of, and the need for, research on how students read and use their mathematics textbook. Department of Mathematics Technical Report, 3.
    Shepherd, M. D., & Van De Sande, C. C. (2014). Reading mathematics for understanding—from novice to expert. The Journal of Mathematical Behavior, 35, 74-86.
    Shumway, R. J. (1971). Negative instances and mathematical concept formation: A preliminary study. Journal for Research in Mathematics Education, 2(3), 218-227.
    Snider, V. E. (1989). Reading Comprehension Performance of Adolescents Withlearning Disabilities. Learning disability quarterly, 12(2), 87-96.
    Spalding, T. L., & Ross, B. H. (2000). Concept learning and feature interpretation. Memory & cognition, 28(3), 439-451.
    Tall, D. (1986). Using the computer as an environment for building and testing mathematical concepts: A tribute to Richard Skemp. Papers in honour of Richard Skemp, 21-36.
    Tsamir, P., Tirosh, D., & Levenson, E. (2008). Intuitive nonexamples: The case of triangles. Educational Studies in Mathematics, 69(2), 81-95.
    Wakefield, D.V. (2000). Math as a second language. The Educational Forum, 64,
    272-279.
    Watson, A., & Chick, H. (2011). Qualities of examples in learning and teaching. ZDM, 43(2), 283-294.
    Watson, A., & Mason, J. (2006). Mathematics as a constructive activity: Learners generating examples. Routledge.
    Weinberg, A., Wiesner, E., Benesh, B., & Boester, T. (2012). Undergraduate students' self-reported use of mathematics textbooks. Primus, 22(2), 152-175.
    Widyastuti, B. W., & Retnowati, E. (2021, March). Effects of Worked Example on Experts’ Procedural Skills in Solving Geometry Problems. In 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020) (pp. 338-343). Atlantis Press.
    Wilson, P. S. (1986). Feature frequency and the use of negative instances in a geometric task. Journal for Research in Mathematics Education, 17(2), 130-139.
    Windingstad, S., Skinner, C. H., Rowland, E., Cardin, E., & Fearrington, J. Y. (2009). Extending research on a math fluency building intervention: Applying taped problems in a second-grade classroom. Journal of Applied School Psychology, 25(4), 364-381.
    Worthen, B. R. (1968). A study of discovery and expository presentation: Implications for teaching. Journal of Teacher Education, 19(2), 223-242.
    Wulan, E. R., & El Milla, Y. I. (2020). Examples and Non-examples as a Road to Understanding the Concept of Function. Eduma: Mathematics Education Learning and Teaching, 9(2), 90-99.
    Yang, K. L., & Li, J. L. (2018). A framework for assessing reading comprehension of geometric construction texts. International Journal of Science and Mathematics Education, 16(1), 109-124.
    Yang, K. L., & Lin, F. L. (2009). Designing innovative worksheets for improving reading comprehension of geometry proof. In Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 377-384).
    Yanuarto, W. N. (2016). Students’ awareness on example and non-example learning in geometry class. International Electronic Journal Of Mathematics Education, 11(10), 3511-3519.
    Zaslavsky, O. (2010). The explanatory power of examples in mathematics: Challenges for teaching. In Instructional explanations in the disciplines (pp. 107-128). Springer, Boston, MA.
    Zaslavsky, O. (2019). There is more to examples than meets the eye: Thinking with and through mathematical examples in different settings. The Journal of Mathematical Behavior, 53, 245-255.
    Zazkis, R., & Leikin, R. (2007). Generating examples: From pedagogical tool to a research tool. For the learning of mathematics, 27(2), 15-21.
    Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing. Cognition and instruction, 4(3), 137-166.
    Zodik, I., & Zaslavsky, O. (2008). Characteristics of teachers’ choice of examples in and for the mathematics classroom. Educational Studies in Mathematics, 69(2), 165-182.

    下載圖示
    QR CODE