研究生: |
吳釗宇 Chao-Yu Wu |
---|---|
論文名稱: |
雙爐管式氣液固相變化機製成長氧化鋅奈米線及其氣體感測特性之研究 Gas sensing properties of ZnO nanowires growned by a double-tube vapor-liquid-solid process |
指導教授: |
程金保
Cheng, Chin-Pao |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 氧化鋅 、奈米線 、氣體感測 、氣液固相變化 |
英文關鍵詞: | ZnO, nanowires, gas sensor, vapor-liquid-solid (VLS) |
論文種類: | 學術論文 |
相關次數: | 點閱:192 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是使用double-tube的方式藉由VLS (Vapor-Liquid-Solid)技術,不需要利用金(Au)觸媒做為催化劑或模板,直接將氧化鋅( Zinc Oxide )奈米線( nanowires )成功的生成於玻璃基板上。結果顯示,工作溫度900◦C,可成功的控制氧化鋅奈米結構成長。此外,改變氧氣流量會對成長氧化鋅奈米線之緻密性與長度有影響,經XRD分析發現,氧化鋅奈米線隨通入氧氣增加繞射峰值也越強,並且呈現(002)為優選成長方向。
以SEM表面組織型態來觀察,當通入8 sccm之氧氣流量的條件下,Al/glass 基板上成長出高深寬比氧化鋅奈米線,奈米線結構緻密性也有提升。在8 sccm之氧化鋅奈米線試片,對於I-V量測也有明顯的電傳導特性,而氣體感測結果發現,奈米線結構對NO2氣體比CO氣體有較佳的感測特性,其響應時間與回復時間都較短,對長期的再現性與穩定性之維持良好。在感測環境工作溫度175◦C,偵測NO2 濃度20 ppm、60 ppm、100 ppm所得最佳感測靈敏度分別為23、33、41。
This study is aiming on demonstrating Zinc Oxide (ZnO) nanostructures were successfully grown on Al/glass substrates by using a double-tube vapor-liquid-solid (VLS) technique without any gold (Au) metal catalyst or template. When the temperature was set at 900◦C, ZnO nanostructures were grown successfully under controlled. With the XRD analysis, ZnO nanowires were preferably grown in (002) direction and were in direct ration to the oxygen level. Also, the result of this study showed that the ratio of oxygen gas flow has the impact of the length and density of ZnO nanowires.
ZnO nanowires were grown on Al/glass substrates in high density with 8 sccm oxygen gas flow under observing by Scanning Electron Microscope (SEM). It is also found that the ZnO nanowire 8 sccm sample has an outstanding electrical conduction property to measure the I-V characteristics.
Moreover, ZnO nanowire has a better sensitivity to NO2 in compare of CO. Its response and recovery time are shorter with an excellent long-term reproducibility and stability. The sensitivities are 23、33、41 when it is to detect NO2 at 20 ppm, 60 ppm, 100 ppm, respectively, at 175◦C.
1. W. Gopel, T.A. Jones, M. Kleitz, J. Lundstrom and T. Seiyama, 「Sensors - A Comprehensive Survey」, Chemical and Biochemical Sensors Part I, Vol. 2, New York, U.S.A(1991).
2. 李俊遠,「氣體感測器介紹」,工業材料,第124期,pp. 82-84 (1997).
3. 葉陶淵,「化學感測器中氣體感測器的新動向」,科儀新知,第20卷4期,pp. 75-78 (1999)
4. http://shop2.cpu.com.tw/ 廣華電子商城.
5. 薛丁仁,「Growth of ZnO Nanowires and their Application to Sensor Devices」 ,國立成功大學微電子工程研究所博士論文,民國九十七年
6. 蔡嬪嬪,「氣體感測器的新動向」,工業材料,第150期,pp. 92-95 (1999).
7. 鄭煜騰,「氣體感測器的市場分析與發展概況」,科儀新知,第18卷5期,pp. 76-84 (1995).
8. 曾明漢,「觸媒燃燒型氣體感測器」,材料與社會,第68卷,pp. 57 (1992).
9. P. B. Weisz, 「Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis」, The Journal of Chemical Physics, Vol. 21, pp. 1531-1538 (1953).
10. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, 「A new detector for gaseous components using semiconducting thin films」, Analytical chemistry, Vol. 34, pp. 1502-1503 (1962).
11. P. J. Shaver, 「Activated tungsten oxide gas detectors」, Applied Physics Letters, Vol. 11, pp. 255-257 (1967).
12. D. Rosenfeld, R. Sanjines, W. H. Schreiner and F. Levy, 「Gas sensitive and selective SnO2 thin polycrystalline films doped by ion implan-tation」, Sensors and Actuators B, Vol. 15-16, pp. 406-409 (1993).
13. H. M. Lin, T. Y. Hsu, C. Y. Tung and C. M. Hsu, 「Hydrogen sulfide detection by nanocrystal Pt doped TiO2 base gas sensors」, Nanostructured Materials, Vol. 6, pp. 1001-1004 (1995).
14. N. Yamazoe, G. Sakai, K. Shimanoe, 「Oxide semiconductor gas sensors」, Sensors and Actuators B, Vol. 7, 63-75 (2003).
15. L. Vayssieres, 「Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions」, Adv. Mater, Vol. 15, pp. 464-466 (2003).
16. F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, C. H. J. Liu, 「ZnO nanorod gas sensor for NO2 detection」, Journal of the Taiwan Institute of Chemical Engineers, Vol. 40, pp. 528-532 (2009).
17. Z. Yang, L.M. Li, Q. Wan, Q.H. Liu, T.H. Wang, 「 High-performance ethanol sensing based on an aligned assembly of ZnO nanorods」, Sens. Actuators B, Vol. 135, pp. 57-60 (2008).
18. K. Ihokura and J. Watson, 「The Stannic Oxide Gas Sensor Principles and Application 」,CRC Press, Inc, chap.2, Tokyo (1994).
19. C.W. Cheng, G.Y. Xu, H.Q. Zhang, Y. Luo, 「Fabricating ZnO nanorods sensor for chemical gas detection at room temperature」, J. Nanosci. Nanotechnol, Vol. 7, pp. 4439-4442 (2007).
20. C. S. Wei, Y. Y. Lin, Y. C. Hu, C. W. Wu, C. K. Shih, C. T. Huang, S. H. Chang, 「Partial-electroded ZnO pyroelectric sensors for responsivity improvement」, Sens.Actuators A, Vol. 128, pp. 18-24 (2006).
21. H. H. Hsieh, C. C. Wu, 「Scaling behavior of ZnO transparent thin-film transistors」, Appl. Phys. Lett., Vol. 89, pp. 041109-041111 (2006).
22. H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G.L. Rhun, 「Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications」, Small, Vol. 2, pp. 561-568 (2006).
23. H. Kind, H. Yang, B. Messer, M. Law, P. Yang, 「Nanowire ultraviolet photodetectors and optical switches」, Adv. Mater, Vol. 14, pp. 158-160 (2002).
24. J. Zhu, Y. Chen, G. Saraf, N. W. Emanetoglu, Y. Lua, 「Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on γ-Al2O3」, Appl. Phys. Lett., Vol. 89, pp. 103513-103515 (2006).
25. D. G. Baik, S. M. Cho, 「Application of sol-gel derived films for ZnO/n-Si junction solar cells」, Thin Solid Films, Vol. 354, pp. 227-231 (1999).
26. S. K. Hazra, S. Basu, 「Hydrogen sensitivity of ZnO p-n homojunctions」, Sens. Actuators B, Vol. 117, pp. 177-182 (2006).
27. J. Jagadish and S. J. Pearton, 「Zinc Oxide Bulk, Thin Film and Nanostructures」, Elsevier, (2006).
28. H. W. Ryua, B. S. Park, 「ZnO sol–gel derived porous film for CO gas sensing」, Sensors and Actuators B, Vol. 96, pp. 717-722 (2003).
29. P. Bhattacharyya, P. K. Basu, 「Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method 」, Sensors and Actuators B, Vol. 124, pp. 62-67 (2007).
30. P. P. Sahay, R. K. Nath, 「Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors 」, Sensors and Actuators B, Vol. 133, pp.222-227 (2008).
31. C. Xiangfeng, J. Dongli, 「Gas-sensing properties of thick film based on ZnO nano-tetrapods 」, Chemical Physics Letters, Vol. 401, pp. 426-429 (2005).
32. A. Salehi, D. J. Kalantari, 「Characteristics of highly sensitive Au/porous-GaAs Schottky junctions as selective CO and NO gas sensors 」, Sensors and Actuators B, Vol. 122, pp.69-74 (2007).
33. D. Calestani, M. Zha, 「Growth of ZnO tetrapods for nanostructure-based gas sensors 」, Sensors and Actuators B, Vol. 144, pp.472-478 (2010).
34. J. Y. Park, D. E. Song, and S. S. Kim, 「An approach to fabricating Chemical sensors based on ZnO nanorod arrays」, Nanotechnology, Vol. 19, 105503, pp.1-5 (2008).
35. S. C. Navale, 「EPR and DRS evidence for NO2 sensing in Al-doped ZnO 」, Sensors and Actuators B, Vol. 130, pp.668-673 (2008).
36. R. Ferro, J. A. Rodriguez, I. Jimenez, 「Gas-Sensing Properties of Sprayed Films of (CdO)χ(ZnO)1-χMixed Oxide 」, IEEE sensors Journal, Vol. 5, pp.256-268 (2005).
37. D. Calestani, M. Zha, 「Growth of ZnO tetrapods for nanostructure-based gas sensors 」, Sensors and Actuators B, Vol. 144, pp.472–478 (2010).
38. M. W. Ahn, K. S. Park, J. H. Heo, 「On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity 」, Sensors and Actuators B, Vol. 138, pp. 168-173 (2009).
39. M. J. S. Spencer, I. Yarovsky, 「Density functional theory study of ZnO nanostructures for NO and NO2 sensing 」, IEEE, pp. 987-990 (2007).
40. E. Comini, C. Baratto, G. Faglia, 「Highly sensitive single crystalline metal oxide nanowires gas sensors 」, IEEE, pp. 315-320 (2006).
41. Z. L. Wang, 「Nanostructures of zinc oxide 」, Materials Today, Vol. 7, pp. 26-33 (2004).
42. J. H. Lee, 「Gas sensors using hierarchical and hollow oxide nanostructures: Overview」, Sensors and Actuators B, Vol. 140, pp. 319-336 (2009).
43. H. J. Yuan, S. S. Xie, D. F. Liu, X. Q. Yan, Z. P. Zhou, L. J. Ci, J. X. Wang, 「Characterization of zinc oxide crystal nanowires grown by thermal evaporation of ZnS powders」, Chemical Physics Letters, Vol. 371, pp. 337-341 (2003).
44. J. M. Janga, S. D. Kimb, H. M. Choia, J. Y. Kima, W. G. Junga, 「Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process」, Materials Chemistry and Physics, Vol. 113, pp. 389-394 (2009).
45. A. Umar, S. Lee, Y. S. Lee, K. S. Nahm, Y. B. Hahn, 「Star-shaped ZnO nanostructures on silicon by cyclic feeding chemical vapor deposition」, Journal of Crystal Growth, Vol. 277, pp. 479-484 (2005)..
46. Z. Chen and L. Gao, 「A facile route to ZnO nanorod arrays using wet chemical method」, Journal of Crystal Growth, Vol. 293, pp. 522-527 (2006).
47. A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, 「Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine」, Jounal of Sol-Gel Science Technology, Vol. 39, pp. 49-56 (2006).
48. C. H. Pandis, 「Low–Temperature Hydrogen Sensors Based on Au Nanoclusters and Schottky Contacts on ZnO Films Deposited by Pulsed Laser Deposition on Si and SiO2 Substrates 」, IEEE sensors Journal, pp. 448-454 (2007).
49. J. Song, S. Lim, 「Effect of seed layer on the growth of ZnO nanorods」, Journal of Physical Chemistry C, Vol. 111, pp. 596-600 (2007).
50. M. N. R. Ashfold, R. P. Doherty, N. G. N. Angwafor, 「The kinetics of the hydrothermal growth of ZnO nanostructures」, Thin Solid Films, Vol. 515, pp. 8679-8683 (2007).
51. J. Y. Chen, C. J. Pan, F. C. Tsao, C. H. Kuo, G. C. Chi, B. J. Pong, C. Y. Chang, D. P. Norton, S. J. Pearton, 「Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst 」, Vacuum, Vol. 83, pp. 1076-1079 (2009).
52. R. S. Wagner, W. C. Ellis, 「Vapor–Liquid–Solid mechanism of single crystal growth」, Applied Physics Letter, Vol. 4, pp. 89-91 (1964).
53. X. D. Wang, J. H. Song, Z. L. Wang, 「Single-crystal nanocastles of ZnO」, Chemical Physics Letters, Vol. 424, pp. 86-90 (2006).
54. C. Geng, Y. Jiang, Y. Yao, X. Meng, C. S. Lee, S. T. Lee, 「Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates」, Advanced Functional Materials, Vol. 14, pp. 589-594 (2004).
55. Y. X. Chen, M. Lewis, W. L. Zhou, 「ZnO nanostructures fabricated through a double-tube vapor-phase transport synthesis 」, Journal of Crystal Growth, Vol. 282, pp. 85-93 (2005).
56. N. V. Hieu, N. D. Chien, 「Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures 」, Physica B , Vol. 403, pp. 50-56 (2008).
57. S. Y. Li, C. Y. Lee, T. Y. Tseng, 「Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process 」, Journal of Crystal Growth, Vol. 247, pp. 357-362 (2003).
58. J. Yang, D. Wang , L. Yang, 「Effects of supply time of Ar gas current on structural properties of Au-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process 」, Journal of Alloys and Compounds , Vol. 450, pp. 508-511 (2008).
59. Y. H. Kang, C. G. Choi, 「Influence of seed layer on the vertical growth of ZnO nanowires 」, Materials Letters, Vol. 63, pp. 679-682 (2009).
60. 陳憶萍,「真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究」,國立成功大學化學工程研究所碩士論文,民國九十三年.
61. J. H. Juna, J. Yuna, K. Choa, I. S. Hwangb, J. H. Leeb, S. Kima, 「Necked ZnO nanoparticle-based NO2 sensors with high and fast response」, Sensors and Actuators B, Vol. 140, pp. 412-417 (2009).
62. S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan, 「Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor」, Sensors and Actuators B, Vol. 107, pp. 379-386 (2005).