研究生: |
彭君豪 Peng, Jun-Hao |
---|---|
論文名稱: |
具定位校正機制之群組機器人路徑規劃與路徑追蹤 Multi-Robot Path Planning and Path Tracking Incorporating Localization Correction Mechanism |
指導教授: |
許陳鑑
Hsu, Chen-Chien 王偉彥 Wang, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 群組機器人路徑規劃 、D*Lite 、蒙地卡羅定位 、路徑追蹤控制 |
英文關鍵詞: | Multi-Robot Path Planning, D*Lite, Monte Carlo Localization, Path Tracking |
DOI URL: | https://doi.org/10.6345/NTNU202205109 |
論文種類: | 學術論文 |
相關次數: | 點閱:199 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出具定位校正機制之群組機器人路徑追蹤以及路徑規劃演算法,透過融合里程計以及雷射距離感測器的設計,來解決里程計存在累積誤差的問題。在定位方面則是引進蒙地卡羅定位法,以粒子濾波器作為主要架構,藉由雷射資訊進行機器人自主定位,透過定位結果補償移動過程中里程計的誤差,來達到更好的控制效果。在路徑規劃方面,考慮到路徑會隨著機器人的移動而有所改變,基於D*Lite 演算法的基礎,並將演算法推廣到群組,視其他機器人為障礙物,進行迴避。並交由MySQL伺服器進行資料統籌,減少機器人的運算負擔,讓機器人可以專心處理感測器資訊。在路徑追蹤方面,本文使用倒階控制法設計運動學控制器,將路徑規劃的結果當作參考信號,以MCL定位以及里程計混合輸出結果取代過去所使用的里程計定位,以避免里程計的累計誤差。實驗結果表示此方法能使機器人準確運行於事先規劃好的軌跡之上,並且能夠發現群組中其他機器人的存在,並嘗試進行迴避。
This thesis presents path tracking algorithm incorporate localization correction mechanism based a planned path. The existed odometer cumulative error problems can be solved by fusing the odometer readings and localization results. For path planning, we apply the D* Lite algorithm to determine an optimal path and extend its use to multi-robot path planning, where other robots are viewed as obstacles to be avoided. A MySQL server is used to integrate information obtained from odometer readings and localization results by a Monte Carlo Localization (MCL) algorithm to reduce the loading of the robots so that they can concentrate on sensing the environment. As for path tracking, the paper uses backstopping method to design a kinematic controller where the planned path is considered as a reference signal. Experimental results show that the proposed method can control the robot to move along the planned path with good agreement.
[1] S. Patel, R. Sanyal, and T. Sobh, “RISCBOT: A WWW-enabled mobile surveillance and identification robot,” Journal of Intelligent and Robotic Systems, vol. 45, no. 1, pp. 15-30, 2006.
[2] B. Stouten and A. J. Graaf, “Cooperative transportation of a large object development of an industrial application,” in Proc of the ICRA‘04 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2450-2455, 2004.
[3] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini, “A short history of cleaning robots,” Autonomous Robots, vol. 9, no. 3, pp. 211-226, 2000.
[4] Y. Liu, J.-h. Liu “RoboCup is a Stage which impulse the research of basic technology in robot,” Asia-Pacific Conference on Computational Intelligence and Industrial Applications, vol. 1, pp. 23-28.
[5] R. E. Kalman. “A new approach to linear filtering and prediction problems,” Trans. of the ASM - Journal of basic engineering, no. 82, pp. 35-45, March 1960.
[6] K. Basye, T. Dean, J. Kirman, and M. Lejter, “A decision-theoretic approach to planning, perception, and control,” IEEE Expert, vol. 7, no. 4, pp. 58-65, Aug. 1992.
[7] Y. C. Ho and R. Lee, “A Bayesian approach to problems in stochastic estimation and control,” IEEE Trans. on Automatic Control, vol. 9, no 4, pp. 333-339, Oct. 2001.
[8] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “ A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, Feb. 2002.
[9] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in dynamic environments,” Journal of Artificial Intelligence Research, pp. 391-427, Nov. 1999.
[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol.4, no. 2, pp. 100-107, Jul. 1968.
[11] S. Koenig and M. Likhachev, “Fast Replanning for Navigation in Unknown Terrain", IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354- 363, Jun 2005.
[12] C. C. De La Cruz and R. Carelli, “Dynamic modeling and centralized formation control of mobile robots,” In Thirty-Second Annual Conference of the IEEE Industrial Electronics Society, pp. 3880-3885, IECON, Paris, 2006.
[13] E. Freire and R. Carelli, “Corridor navigation and wall-following stable control for sonar-based mobile robots,” Robotics and Autonomous Systems, vol. 45, pp. 235-247, 2003.
[14] C.-Y. Chen, T.-H. S. Li, Y.-C. Yeh, and C.-C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, pp. 156-166, 2009.
[15] Y. Li, Z. Wang, and L. Zhu, “Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot,” In Proceedings of the 2010 IEEE International Conference on Information and Automation, pp. 753-757, 2010.
[16] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic based controller for wheeled mobile robots,” IEEE Trans. on Control Systems Technology, vol. 14, no. 3, pp. 501-510, 2006.
[17] P. Antonini, G. Ippoliti, and S. Longhi, “Learning control of mobile robots using a multiprocessor system,” Control Engineering Practice, vol. 14, pp. 1279-1295, 2006.
[18] B. D. Gouveia, D. Portugal, D. C. Silva and L. Marques “Computation Sharing in Distributed Robotic Systems: A Case Study on SLAM,” IEEE Trans. On Automation Science and Engineering, vol. 12, pp. 637-649, no. 2, Apr 2006.
[19] L. Vig and J. A. Adams “Multi-robot coalition formation,” IEEE Trans. on Robotics, vol. 22, pp. 637-649, no. 4, August 2006.
[20] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “ Monte Carlo localization for mobile robots,” IEEE International Conference on Robotics and Automation, Detroit, Michigan, vol. 2, pp. 1322-1328, May 1999.
[21] 黎乃仁, “結合單體搜尋法之改良式粒子濾波器及其在非線性函數追蹤及機器人定位之研究”,淡江大學,碩士論文,98年6月。
[22] T. Pencheva, K. Atanassov, and A. Shannon, “Modelling of a Stochastic Universal Sampling Selection Operator in Genetic Algorithms Using Generalized Nets,” Tenth Int. Workshop on Generalized Nets, pp1-7, Sofia, Dec 2009.
[23] F. Kunhe, J. Gomes, and W. Fetter, “Mobile robot trajectory tracking using model predictive control,” IEEE Latin-American Robotics Symposium, Luis, Brazil, 2005.
[24] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” In Thirty-Fourth Conference on Decision and Control, pp. 3805-3810, New Orleans, USA, 1995.
[25] C. C. De La Cruz and R. Carelli, “Dynamic modeling and centralized formation control of mobile robots,” In Thirty-Second Annual Conference of the IEEE Industrial Electronics Society, pp. 3880-3885, IECON, Paris, 2006.
[26] C.-Y. Chen, T.-H. S. Li, Y.-C. Yeh and C.-C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, pp. 156-166, 2009.
[27] Y. Li, Z. Wang, and L. Zhu, “Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot,” In Proceedings of the 2010 IEEE International Conference on Information and Automation, pp. 753-757, 2010.
[28] Pioneer 3 Operations Manual, available:
http://www.ist.tugraz.at/_attach/Publish/Kmr06/pioneer-robot.pdf
[29] 高裔峰, “應用於室內巡邏之自主式輪型機器人適應性動態控制器設計與實現”,國立臺灣師範大學,碩士論文,102年7月。
[30] 陳元君, “混合型路徑規劃演算法及其實現”,國立臺灣師範大學,碩士論文,102年7月。
[31] 郭家瑞, “增強型蒙地卡羅定位法及其在單板電腦之實現”,國立臺灣師範大學,碩士論文,103年7月。
[32] 劉奕君, “利用合作式基因最佳化法之機器人路徑規劃”,國立臺灣師範大學,碩士論文,103年7月。
[33] 鍾秉剛, “基於向量模型設計與實現蒙地卡羅定位與路徑規劃於輪型移動機器人”,國立臺灣師範大學,碩士論文,104年1月。