簡易檢索 / 詳目顯示

研究生: 林逸杰
Lin, I-Chieh
論文名稱: 微波合成二硫化錫作為光催化 二氧化碳還原之研究
Photo-Catalysis CO2 Reduction By Microwave Synthesis Tin Disulfide.
指導教授: 陳家俊
Chen, Chia-Chun
陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 量子效率太陽光光催化二氧化碳二硫化錫乙醛十二烷基硫酸鈉 (SDS)
英文關鍵詞: Quantum Efficiency, Solar Energy, Carbon Dioxide, Tin Disulfide, Acetaldehyde, Sodium dodecyl sulfate (SDS), Photocatalyst
DOI URL: https://doi.org/10.6345/NTNU202204100
論文種類: 學術論文
相關次數: 點閱:165下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用連續進樣式二氧化碳光催化反應系統,以鹵素燈作為模擬太陽光光源激發二硫化錫光觸媒,以固-氣相的催化反應將二氧化碳還原成具有經濟價值的碳氫化合物,並原位進樣反應器中的氣體至氣相層析儀/火燄離子化偵測器,再利用與量測方式相同之連續式檢量線,即可及時量測反應效率並轉換成量子效率。
    為了有效地縮短加熱時間並且精準地控制合成條件,本篇合成之二硫化錫光催化觸媒是利用程式控制之微波加熱法合成,借助微電腦以及反應器內溫度的即時回饋控制,此合成方法擁有優異的再現性。
    同時本研究以拉曼光譜儀與X-光繞射儀進行結晶性的分析,利用掃描式電子顯微鏡作材料微結構鑑定,將X-光吸收光譜做線性疊加進行材料組成分析,最後將表面功函數量測系統與紫外光-可見光吸收光譜結合建立能帶資訊,探討能帶與二氧化碳光催化之關係,以此探討不同溶劑、合成時間對二硫化錫粒子的影響。
    本篇利用乙二醇、乙醇或是去離子水作為溶劑,改變不同的反應時間以及SDS的添加量,以求最高的量子效率。最後發現以去離子水添加1 %莫耳百分比的SDS反應60分鐘時,成功地利用光催化反應將二氧化碳還原成八個電子轉移的乙醛,同時計算其量子效率達到了0.028 %,是市售二硫化錫量子效率0.0011 %的25倍。

    With a photocatalysis system for CO2 reduction reactions linked to a halogen lamp solar source, we continuously collected highly valuable organic products in-situ by using tin disulfide photocatalysis in solid - gas phase reaction with Gas chromatography/Flame ionized detector (GC/FID). Then, using a newly developed calibration curve for the real time system, we converted the signal to measure the quantum efficiency (QE).
    In this study, we shortened the reaction time and maintained precise control of our system conditions by using a programmable microwave-assisted synthesis system for tin disulfide particles synthetization; thusly, we could reproduce high quality samples easily. Six major techniques were used to characterize the particles: Raman spectroscopy and X-ray diffraction spectroscopy were used for crystallinity analysis, a Scanning Electron Microscopy for microstructure characterization, X-ray absorption spectroscopy from NSRRC, to quantify different components by linear combination of standard compounds, and photo-electron spectroscopy in air coupled with UV-Visible absorption spectroscopy to find the relationship between band position and photocatalytic reactivity.
    We tried optimizing efficiency of the tin disulfide by: sampling different solvents (ethylene glycol, ethanol, and deionized water ) in the microwave reaction, testing different reaction times (5 min - 120 min), and altering the concentration of SDS (0-2000%). We found that by synthesizing tin disulfide in deionized water with 1% SDS for 1 hour we achieved a QE of 0.028%, which is 25 times better than the commercial tin disulfide. Furthermore, the CO2 reduction reaction resulted in the formation of acetaldehyde, implying eight electrons transferred. In total, we found a new process for the synthesis of tin disulfide that demonstrates a significant enhancement to the reduction activity of carbon dioxide.

    目錄 摘要 2 ABSTRACT 3 謝誌 5 圖目錄 8 表目錄 12 第 壹 章 緒論 13 壹.一 前言 13 壹.二 研究動機 14 第 貳 章 文獻回顧 15 貳.一 溫室效應 15 貳.二 觸媒與光觸媒 17 貳.三 傳導帶、價電帶以及能隙 19 貳.四 二氧化碳處理技術 23 貳.五 二硫化錫光觸媒 29 第 參 章 實驗儀器及原理 33 參.一 共軛聚焦拉曼散射量測系統(Confocal Raman Microscopy) 33 參.二 氣相層析儀-火焰離子化偵測器 36 .二-1 氣相層析儀(Gas Chromatography) 36 .二-2 火焰離子化偵測器(Flame Ionization Detector) 38 .二-3 光催化效率量測系統 39 參.三 微波加熱合成系統 (Microwave Synthesis System) 42 參.四 表面功函數量測系統 (Photo-electron Spectrometer, AC-2) 44 參.五 掃描式電子顯微鏡 46 參.六 紫外光-可見光吸收量測系統(Ultraviolet–Visible Spectroscopy) 49 參.七 X-光吸收能譜 (X-ray Absorption Spectroscopy) 51 參.八 X-光繞射分析儀 (X-ray Diffraction) 53 第 肆 章 實驗方法與製備 55 肆.ㄧ 實驗藥品 55 肆.二 標準藥品 56 肆.三 實驗方法 57 .三-1 實驗流程 57 .三-2 合成二硫化錫 58 .三-3 GC標準品製備 60 .三-4 製作動態量測GC全範圍檢量線 61 第 伍 章 結果與討論 63 伍.一 不同溶劑的影響 63 .一-1 乙醇溶液 63 .一-2 乙二醇溶液 72 .一-3 去離子水溶液 78 伍.二 介面活性劑對反應的影響 85 伍.三 動態量測GC全範圍檢量線 103 第 陸 章 結論 106 參考文獻 107

    1. IPCC. Intergovernmental Panel on Climate Change. http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml (accessed June 27, 2016).
    2. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., Eds. Climate Change 2007: The Physical Science Basis;
    Cambridge University Press: Cambridge, 2007; p 212.
    3. University, P. Spontaneous process. http://www.chem.purdue.edu/gchelp/gloss/sponprocess.html
    (accessed June 27, 2016).
    4. Wikipedia. Catalysis-Heterogeneous catalysts. Wikipedia. https://en.wikipedia.org/wiki/Catalysis#Heterogeneous_catalysts
    (accessed June 27th, 2016).
    5. Bryant, D. A.; Frigaard, N. U. Prokaryotic photosynthesis and phototrophy illuminated. Trends. Microbiol. 2006, 14, pp 488-496.
    6. Gueymard, C. A.; Myers, D.; Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Sol. Energy 2002, 73, pp 443-467.
    7. French, A. P.; Taylor, E. F.
    Introduction to Quantum Physics (The M.I.T. Introductory Physics Series), 1st ed.; W. W. Norton & Company: New York City, 1978; p 24.
    8. Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, 1st ed.;
    John Wiley & Sons Inc, 1991; Vol. 1, pp 10-11.
    9. Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review 1926, 28, pp 1049-1070.
    10. Atkins, P.; Paula, J. D. Atkins' Physical Chemistry, 9th ed.;
    Oxford University Press: New York, 2010.
    11. 黃大仁. 二氧化碳減量技術. 工業污染防治 2003, No. 88, pp 123-134.
    12. 談駿嵩. 溫室氣體CO2回收與再利用技術.
    工安環保報導 2004, No. 23, pp 16-17.
    13. 宣大衡; 范振暉. 二氧化碳地質封存所面對之問題.
    工業污染防治 2007, 102, pp 109-126.
    14. 林鎮國. 二氧化碳減量:二氧化碳的儲存, 2007. 科技大觀園. https://scitechvista.nat.gov.tw/zh-tw/articles/c/0/12/10/1/886.htm
    (accessed Aug. 5th, 2016).
    15. 邱瑞焜. 淺談二氧化碳海洋隔離法. 能源報導 2007, pp 24-26.
    16. Fan, L.; Fujimoto, K. Development of Active and Stable Supported Noble.
    Energ. Convers. Manage. 1995, 36, pp 633-636.
    17. Tomoyuki, I. Highly Effective Compounds by Using Newly Developed Multi-Functional Composite Catalysts. Asian-Pacific Conference on Industrial Waste Minimization and Sustainable Development, Taipei, 1997; pp 565-575.
    18. 何咨泓. 二氧化碳資源化利用超臨界相甲醇合成反應新製程開發;
    碩士論文; 長庚大學: 桃園市, 2000.
    19. Getoff, N.; Scholes, G.; Weiss, J. Reduction of Carbon Dioxide in Aqueous Solutions Under the Influence of Radiation. Tetrahedron Lett. 1960, 39, pp 17-23.
    20. 施信民. 飛灰/氫氧化鈣吸收劑吸收二氧化碳之研究; 計畫報告;
    國科會/行政院環境保護署研究計畫報告: 台北市, 2000.
    21. 王敏盈; 陳伯中; 曹恆光. 培養藻類於新型光化學生物反應器以進行二氧化碳之固定化; 研究計畫報告; 國科會/ 環保署科技合作研究計畫報告, 2000.
    22. 王亞男. 柳杉、樟樹對溫室氣體二氧化碳固定效益之研究; 計畫報告;
    國科會/環保署科技合作研究計畫報告: 台北市, 2000.
    23. 張富龍; 林畢修. 利用海洋微細藻類固定二氧化碳及再資源化應用.
    台灣環保產業雙月刊 2005, 30, pp 11-13.
    24. Hirao, T.; Watabe, S.; Tubono, M.; Kitagawa, K. Studies on Dispersion of Refrigerant Composition for Multi-air Conditioners with Non-azeotropic Refrigerant Mixture. Mitsubishi Heavy Industries, Ltd Technical Review 1998, 35, pp 36-40.
    25. wikipedia.org. Standard electrode potential. https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page) (accessed July 5th, 2016).
    26. Daniel, C. H. Quantitative Chemical Analysis, 8th ed.;
    W. H. Freeman and Company: New York, 2010.
    27. Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, pp 2177-2196.
    28. Kawai, T.; Sakata, T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286, pp 474-476.
    29. Scandola, F.; Balzani, V. Energy-transfer processes of excited states of coordination compounds. J. Chem. Educ. 1983, 60, pp 814-823.
    30. Finn, C.; Schnittger, S.; Yellowlees, L.J.; Love, J. B. Molecular approaches to the electrochemical reduction of carbon dioxide.
    Chem. Commun. 2012, 48, pp 1392-1399.
    31. Tseng, I. H.; Chang, W. C.; Wu, J. C. S. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts.
    Appl. Catal. B Environ. 2002, 37, pp 37-48.
    32. Olaa, O.; Maroto-Valerb, M.; Liua, D.; Mackintosh, S.; Lee, C. W.; Wu, J. C. S. Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation.
    Appl. Catal. B Environ. 2012, 126, pp 172-179.
    33. Asi, M. A. A.; Hea, C.; Su, M.; Xia, D.; Lin, L.; Deng, H.; Xiong, Y.; Qiu, R.; Li, X. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today 2011, 175, pp 256-263.
    34. Richardson, P. L.; Perdigoto, M. L. N.; Wang, W.; Lopes, R. J. G. RETRACTED: Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol.
    Appl. Catal. B Environ. 2012, 126, pp 200-207.
    35. Woolerton, T. W.; Sheard, S.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. CO2 photoreduction at enzyme-modified metal oxide nanoparticles.
    Energy Environ. Sci. 2011, 4, pp 2393-2399.
    36. Kim, W.; Seok, T.; Choi, W. Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles.
    Energy Environ. Sci. 2012, 5, pp 6066-6070.
    37. Kuwabata, S.; Uchida, H.; Ogawa, A.; Hirao, S.; Yoneyama, H. . Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution.
    J. Chem. Soc., Chem. Commun. 1995, No. 8, pp 829-830.
    38. Zhao, Z.H.; Fan, J. M.; Wang, Z. Z. Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine. J. Clean. Prod. 2007, 15, pp 1894-1897.
    39. Vijayan, B.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. J. Phys. Chem. C. 2010, 114, pp 12994-13002.
    40. Nguyen, T.V.; Wu, J. C. S. Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier.
    Appl. Catal. A Gen. 2008, 335, pp 112-120.
    41. Wang, Y.; Li, B.; Zhang, C.; Cui, L.; Kang, S.; Lib, X.;Zhou, L. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation.
    Appl. Catal. B Environ. 2013, 130-131, pp 277-284.
    42. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J. Mater. Chem. 2011, 21, pp 13452-13457.
    43. Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts.
    J. Phys. Chem. Lett. 2010, 1, pp 48-53.
    44. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. J. Am. Chem. Soc. 2012, 134, pp 11276-11281.
    45. Pathak, P.;Meziani, M. J.; Li, Y.; Cureton, L. T.; Sun, Y. P. Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts.
    Chem. Commun. 2004, No. 10, pp 1234-1235.
    46. Wang, W. N.; Park, J.; Biswas, P. Rapid synthesis of nanostructured Cu–TiO2–SiO2 composites for CO2 photoreduction by evaporation driven self-assembly.
    Catal. Sci. Technol. 2011, 1, pp 593-600.
    47. Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; Xie, Y. Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting. Angew. Chem. Int. Ed. 2012, 51, pp 8727-8731.
    48. Ma, J.; Lei, D.; Mei, L.; Duan, X.; Li, Q.; Wang, T.; Zheng W. Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 2012, 14, pp 832-836.
    49. Ma, D.; Zhou, H.; Zhang, J.; Qian, Y. Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals.
    Mater. Chem. Phys. 2008, 111, pp 391-395.
    50. Umar, A.; Akhtar, M. S.; Dar, G. N.; Abaker, M.; Al-Hajry, A.; Baskoutas, S. Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 2013, 114, pp 183-190.
    51. Lei, Y.; Song, S.; Fan, W.; Xing, Y.; Zhang, H. Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2 Hierarchical Structures and Their Enhanced Photocatalytic Property. J. Phys. Chem. C. 2009, 113, pp 1280-1285.
    52. Ktlabe. File:SnS2-bas.png, 2014. wikimedia. https://commons.wikimedia.org/wiki/File:SnS2-bas.png
    (accessed Aug. 4th, 2016).
    53. Liu, H.; Su, Y.; Chen, P.; Wang, Y. Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity.
    J. Mol. Catal. A Chem. 2013, 378, pp 285-292.
    54. Zhang, Y. C.; Du, Z. N.; Zhang, M. Hydrothermal synthesis of SnO2/SnS2 nanocomposite with high visible light-driven photocatalytic activity.
    Mater. Lett. 2011, 65, pp 2891-2894.
    55. Zhang, Y. C.; Du, Z. N.; Li, K. W.; Zhang, M.; Dionysiou, D. D. High-Performance Visible-Light-Driven SnS2/SnO2 Nanocomposite Photocatalyst Prepared via In situ Hydrothermal Oxidation of SnS2 Nanoparticles.
    ACS Appl. Mater. Interfaces 2011, 3, pp 1528-1537.
    56. Kit, U. Raman: theory and instrumentation; Technical report;
    Dept. of MS&E CCMR,NBTC facilities.
    57. Miessler, G. L.; Tarr, D. A. Inorganic Chemirtry, 3rd ed.;
    Prentice Hall: Northfield, Minnesota, 2003.
    58. Hsu, H. C. Raman Scattering Spectroscopy: An Introduction to Principles, Instruments and Applications; Tutorial report; Taipei, 2008.
    59. 呂家榮; 吳章甫; 黃盛修; 王欽安. 直讀式儀器原理及應用【專業版】; 技術報告;
    行政院勞工委員會: 台北市, 中華民國九十六年.
    60. 張又中. 光催化量測系統示意圖; (尚未發表).
    61. آب و مایکروویو. هلیوفیزیک، محلی برای دانش آموزانِ فیزیکی. http://heliofizx.ir/post/microwave-and-explosion (accessed June 28, 2016).

    62. Nave, C. R. Interaction of Radiation with Matter. HyperPhysics. http://hyperphysics.phy-astr.gsu.edu/hbase/mod3.html
    (accessed June 28th, 2016).
    63. PIKE-technologies. Diffuse Reflectance – Theory and Applications, 2011. PIKE technologies. http://www.piketech.com/files/pdfs/DiffuseAN611.pdf
    (accessed June 28, 2016).
    64. Roca, R. A.; Sczancoski, J. C.; Nogueira, I. C.; Fabbro, M. T.; Alves, H. C.; Gracia, L.; Santos, L. P. S.; Sousa, C. P. D.; Andrés, J.; G. E. Luz Jr., G. E.; Longo, E.; Cavalcante, L. S. Facet-dependent photocatalytic and antibacterial properties of α-Ag2WO4 crystals: combining experimental data and theoretical insights.
    Catal. Sci. Technol. 2015, 5, pp 4091-4107.
    65. Paul, F. An Introduction to Xray Absorption Spectroscopy; Technical Report; National Institute of Advanced Industrial Science & Technology, 2012.
    66. Myers, H. P. Introductory Solid State Physics., 2nd ed.; CRC Press, 1997.
    67. Price, L. S.; Parkin, I. P.; Hardy, A. M. E.; Clark, R. J. H.; Hibbert, T. G.; Molloy, K. C. Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass. Chem. Mater. 1999, 11, pp 1792-1799.
    68. Malaquias, J.; Fernandes, P. A.; Salomé, P. M. P.; Cunha, A. F. D. Assessment of the potential of tin sulphide thin films prepared by sulphurization of metallic precursors as cell absorbers. Thin Solid Films 2011, 519, pp 7416-7420.
    69. Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals.
    Journal of Earth and Planetary Materials 2000, 85, pp 543-556.
    70. Partington, J. R. A text-book of inorganic chemistry for university students; Macmillan and co., limited: London, 1921.
    71. Wang, S.; An, C.; Yuan J. Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides. Materials 2010, 3, pp 401-433.
    72. Gajendiran, J.; Rajendran V. Synthesis of SnS nanoparticles by a surfactant-mediated hydrothermal method and their characterization.
    Adv. Nat. Sci.: Nanosci. Nanotechnol 2011, 2, pp 1-4.
    73. V8rik. File:MolybdenumMOdiagram.png, 2007. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:MolybdenumMOdiagram.png
    (accessed Aug. 5th, 2016).
    74. Robert, A. R. File:Solar Spectrum.png. https://en.wikipedia.org/wiki/File:Solar_Spectrum.png(accessed June 27th, 2016).

    75. RKI Instruments, I. Photoelectron Spectrometer AC-2. RKI Instruments. http://www.rkiinstruments.com/pages/AC2.htm (accessed Aug. 5, 2016).

    76. Rheodyne. Sample Injectors. Rheodyne_Catalog. http://www.hplc.sk/pdf/Rheodyne/Rheodyne_Catalog.pdf
    (accessed June 28th, 2016).
    77. Innotec. Spectroscopy Uv-vis Hitachi U-2900 | 2910 The two beam. http://innotec.com.vn/en/san-pham/may-quang-pho-u-2900-hitachi/
    (accessed June 28th, 2016).
    78. GianniG46. File:Lambert2.gif, 2010. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Lambert2.gif (accessed Aug. 5th, 2016).

    79. Elder, W. N. What is Climate Change? https://www.nps.gov/goga/learn/nature/climate-change-causes.htm
    (accessed June 27th, 2016).
    80. chemwiki.ucdavis.edu. XANES: Theory. http://chemwiki.ucdavis.edu/Core/Physical_Chemistry/Spectroscopy/X-ray_Spectroscopy/XANES%3A_Theory (accessed June 28th, 2016).

    81. Chan, C. D. N. Diffusion rayleigh et diffraction.png, 2004. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Diffusion_rayleigh_et_diffraction.png (accessed Aug. 4th, 2016).
    82. American Society for Testing and Materials, (. Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/
    (accessed June 30th, 2016).
    83. Reuter, N.; Meer, I. X. D.; Witte, E. D.; Flipse, L. 技術のヒント! 水素炎イオン化検出器 (FID) - 検出器情報, 2011. chem-agilent.com. http://www.chem-agilent.com/accessagilent/article.php?page=201101-05 (accessed June 28, 2016).
    84. 郭瀚介. SEM的微觀世界; 南台科技大學, 2012.
    85. Brown, T. E.; LeMay, H. E. H.; Bursten, B. E.; Murphy, C.; Woodward, P. SECTION 12.4 Metallic Bonding. In Chemistry: The Central Science, 12th ed.;
    Pearson Education, Inc, 2012; p 479.
    86. Harris, Walter E.; Habgood, H.W. Programmed Temperature Gas Chromatography, 1st ed.; John Wiley & Sons: New York, 1966.
    87. Hedman, B. Metal Ions in Biological Systems ; Technical report; Stanford Synchrotron Radiation Lightsource (SSRL): Stanford, 2015.
    88. Patil, R. S. Introduction of gas chromatagraphy; Technical report;
    JSPM's Charak College of Pharmacy and Research: Wagholi.
    89. Patricia.fidi; Paul, L. File:Electron orbitals.svg, 2006. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Electron_orbitals.svg
    (accessed Aug 4th, 2016).
    90. Radboun University Nijmegen. EDS SEM. http://www.vcbio.science.ru.nl/en/fesem/eds/ (accessed June 28, 2016).

    下載圖示
    QR CODE