簡易檢索 / 詳目顯示

研究生: 馬凱俊
Ma, Kai-Chun
論文名稱: 運用共平面波導探測鐵磁薄膜的鐵磁共振及自旋幫浦效應
Using Coplanar Waveguide to Detect Ferromagnetic Resonance and Spin Pumping Effect
指導教授: 江佩勳
Jiang, Pei-hsun
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 共平面波導鐵磁共振自旋幫浦效應逆自旋霍爾效應
英文關鍵詞: coplanar waveguide, ferromagnetic resonance, spin pumping effect, inverse spin Hall effect
DOI URL: https://doi.org/10.6345/NTNU202203652
論文種類: 學術論文
相關次數: 點閱:127下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要探討鐵磁性物質的自旋幫浦效應(spin pumping effect, SPE),主要是鐵磁性物質,選用鎳鐵合金(permalloy, Py, Ni80Fe20)及鈷(cobalt, Co)和一般金屬,選用鉑(platinum, Pt)所組成的雙層薄膜結構。鐵磁共振(ferromagnetic resonance, FMR)現象在鐵磁/一般金屬雙層薄膜結構中,可使其鐵磁層產生一自旋流(spin current)注入一般金屬層,稱之為自旋幫浦效應。自旋流跨過鐵磁/一般金屬雙層薄膜之介面時,不同自旋方向的電子由於自旋軌道耦合作用(spin-orbit coupling, SOC),會引致逆自旋霍爾效應(inverse spin Hall effect, ISHE)並產生一橫向電荷流。
      我們利用了共平面波導(coplanar waveguide, CPW)來探測鐵磁共振(ferromagnetic resonance, FMR)現象,以及利用設計於鐵磁/一般金屬雙層薄膜結構上的直流量測導線測量經由逆自旋霍爾效應引致的電荷訊號。

    My research focuses on the spin pumping effect(SPE)in bilayer structures of ferromagnetic materials(FM)and normal materials(NM). In our experiment, we choose permalloy(Ni80Fe20, Py)or cobalt(Co)as the FM layer and platinum(Pt)as the NM layer. Ferromagnetic resonance(FMR)in the FM/NM bilayer can induce spin pumping from FM layer to NM layer, and the spin-orbit coupling(SOC)in the platinum layer leads to the inverse spin Hall effect(ISHE), generating a charge signal.
      We use coplanar waveguides(CPW)to detect ferromagnetic resonance in FM layer, and designed dc contacts on the bilayer structure to measure charge signals from the inverse spin Hall effect.

    1 理論介紹 ………………………………………………………6 1.1 磁性物質…………………………………………………… 6 1.1.1 磁性物質的種類………………..…………………………6 1.1.2 鐵磁性物質的特性…………………………………..……8 1.1.3 磁異向性簡介……………………………………..………9 1.2 鐵磁共振(ferromagnetic resonance, FMR)…………12 1.2.1 Landau-Lifshitz-Gilbert equation(L-L-G eq.)…….14 1.3 自旋幫浦效應(spin pumping effect, SPE)……..……15 1.4 逆自旋霍爾效應(inverse spin Hall effect, ISHE)……15 1.5 自旋整流效應(spin rectification effect, SRE)……….16 1.6 共平面波導(coplanar waveguide, CPW)…….......…17 2 實驗儀器介紹………………………………...……………...19 2.1 掃描式電子顯微鏡 …………………….………….....……19 2.2 蒸鍍系統 ……………………..……………………………20 2.2.1 熱電阻蒸鍍系統(thermal evaporation) ……………21 2.2.2 電子束蒸鍍系統(electron beam evaporation)….…22 2.2.3 脈衝雷射蒸鍍系統(pulsed laser deposition, PLD)..24 2.3 向量網路分析儀 ………………………….………………..26 3 鐵磁薄膜樣品製作流程及實驗方法 ………………………...29 3.1 Co、Co/Pt;Py、Py/Pt 薄膜樣品製作流程……………..29 3.1.1 黃光微影術(photo lithography)……………………..29 3.1.1.1 光罩設計與製作………………………………………..30 3.1.1.2 黃光微影術製作流程…………………………………..36 3.1.2 電子束微影術(electron beam lithography, EBL)….39 3.1.3 熱電阻式蒸鍍製程 …………………………………...….41 3.1.4 電子束蒸鍍製程 ………………………………………....42 3.1.5 脈衝雷射蒸鍍製程 ………………………………………43 3.2 實驗測量方法 ……………………………………………...45 4 結果與討論 …………………………………………………..48 4.1 量測鐵磁共振時的共振磁場及飽和磁化量 ………………48 4.2 比較吸收峰值半高寬 及阻尼常數…………………………51 5 未來展望………………………………………………………55 6 參考文獻………………………………………………………56

    1. Kittel, C. (2005). Introduction to solid state physics. Wiley.
    2. 金重勳 (2002). 磁性技術手冊. 磁性技術協會出版
    3. Smith, R. C., & Hom, C. L. (1999). Domain wall theory for ferroelectric hysteresis. Journal of Intelligent Material Systems and Structures, 10(3), 195-213.
    4. Jiles, D. C., & Atherton, D. L. (1986). Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61(1-2), 48-60.
    5. Zeper, W. B., Greidanus, F. J. A. M., Carcia, P. F., & Fincher, C. R. (1989). Perpendicular magnetic anisotropy and magneto‐optical Kerr effect of vapor‐deposited Co/Pt‐layered structures. Journal of Applied Physics, 65(12), 4971-4975.
    6. Bland, J. A. C., & Heinrich, B. (Eds.). (2006). Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties (Vol. 1). Springer Science & Business Media.
    7. Bruno, P., & Renard, J. P. (1989). Magnetic surface anisotropy of transition metal ultrathin films. Applied Physics A, 49(5), 499-506.
    8. Jamet, M., Wernsdorfer, W., Thirion, C., Mailly, D., Dupuis, V., Mélinon, P., & Pérez, A. (2001). Magnetic anisotropy of a single cobalt nanocluster. Physical Review Letters, 86(20), 4676.
    9. Thomson, T., Hu, G., & Terris, B. D. (2006). Intrinsic distribution of magnetic anisotropy in thin films probed by patterned nanostructures. Physical Review Letters, 96(25), 257204.
    10. Cullity, B. D., & Graham, C. D. (2011). Introduction to magnetic materials. John Wiley & Sons.
    11. Kittel, C. (1948). On the theory of ferromagnetic resonance absorption. Physical Review, 73(2), 155.
    12. Suhl, H. (1957). The theory of ferromagnetic resonance at high signal powers. Journal of Physics and Chemistry of Solids, 1(4), 209-227.
    13. Farle, M. (1998). Ferromagnetic resonance of ultrathin metallic layers. Reports on Progress in Physics, 61(7), 755.
    14. Visintin, A. (1985). On Landau-Lifshitz’equations for ferromagnetism. Japan Journal of Applied Mathematics, 2(1), 69-84.
    15. Kauffman, J. W., & Koehler, J. S. (1955). Quenching-In of Lattice Vacancies in Pure Gold. Physical Review, 97(2), 555.
    16. Zhang, S., & Zhang, S. S. L. (2009). Generalization of the Landau-Lifshitz-Gilbert equation for conducting ferromagnets. Physical Review Letters, 102(8), 086601.
    17. Tserkovnyak, Y., Brataas, A., & Bauer, G. E. (2002). Enhanced Gilbert damping in thin ferromagnetic films. Physical Review Letters, 88(11), 117601.
    18. Tserkovnyak, Y., Brataas, A., Bauer, G. E., & Halperin, B. I. (2005). Nonlocal magnetization dynamics in ferromagnetic heterostructures. Reviews of Modern Physics, 77(4), 1375.
    19. Mosendz, O., Pearson, J. E., Fradin, F. Y., Bauer, G. E. W., Bader, S. D., & Hoffmann, A. (2010). Quantifying spin Hall angles from spin pumping: Experiments and theory. Physical Review Letters, 104(4), 046601.
    20. Saitoh, E., Ueda, M., Miyajima, H., & Tatara, G. (2006). Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied Physics Letters, 88(18), 182509.
    21. Mosendz, O., Vlaminck, V., Pearson, J. E., Fradin, F. Y., Bauer, G. E. W., Bader, S. D., & Hoffmann, A. (2010). Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Physical Review B, 82(21), 214403.
    22. Obstbaum, M., Härtinger, M., Bauer, H. G., Meier, T., Swientek, F., Back, C. H., & Woltersdorf, G. (2014). Inverse spin Hall effect in Ni81Fe19/normal-metal bilayers. Physical Review B, 89(6), 060407.
    23. Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H., Yoshino, T., ... & Saitoh, E. (2011). Inverse spin-Hall effect induced by spin pumping in metallic system. Journal of Applied Physics, 109(10), 103913.
    24. Simons, R. N. (2004). Coplanar waveguide circuits, components, and systems (Vol. 165). John Wiley & Sons.
    25. Wen, C. P. (1969). Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. Microwave Theory and Techniques, IEEE Transactions, 17(12), 1087-1090.
    26. Williams, D. B., & Carter, C. B. (1996). The transmission electron microscope (pp. 3-17). Springer Us.
    27. Mattox, D. M. (2010). Handbook of physical vapor deposition (PVD) processing. William Andrew.
    28. Mahan, J. E. (2000). Physical vapor deposition of thin films. Physical Vapor Deposition of Thin Films, by John E. Mahan, pp. 336. ISBN 0-471-33001-9. Wiley-VCH, January 2000., 336.
    29. Chrisey, D. B., & Hubler, G. K. (Eds.). (1994). Pulsed laser deposition of thin films.
    30. Johnson, M. T., Kotula, P. G., & Carter, C. B. (1999). Growth of nickel ferrite thin films using pulsed-laser deposition. Journal of Crystal Growth, 206(4), 299-307.
    31. Kurokawa, K. (1965). Power waves and the scattering matrix. Microwave Theory and Techniques, IEEE Transactions on, 13(2), 194-202.
    32. Vlaminck, V., Pearson, J. E., Bader, S. D., & Hoffmann, A. (2013). Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order. Physical Review B, 88(6), 064414.
    33. Gui, Y. S., Mecking, N., Zhou, X., Williams, G., & Hu, C. M. (2007). Realization of a room-temperature spin dynamo: The spin rectification effect. Physical Review Letters, 98(10), 107602.

    下載圖示
    QR CODE