簡易檢索 / 詳目顯示

研究生: 彭啟瑞
Peng, Chi-Jui
論文名稱: 臺灣樟屬植物精油與純露成分分析及生物活性探討
Chemical composition and biological activities of essential oils and hydrosols from Cinnamomum plants in Taiwan
指導教授: 張一知
Chang, I-Jy
口試委員: 張一知
Chang, I-Jy
葉怡均
Yeh, Yi-Chun
葉伊純
Yeh, Yi-Cheun
口試日期: 2023/07/07
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 樟屬化學組成純露精油抗菌性抗氧化
英文關鍵詞: Cinnamomum, chemical composition, hydrosol, essential oil, antibacterial, antioxdation
研究方法: 實驗設計法準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301228
論文種類: 學術論文
相關次數: 點閱:150下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以蒸氣蒸餾法萃取五種樟屬植物葉部之精油和純露,植物分別為樟樹、土肉桂、臺灣肉桂、香桂及胡氏肉桂。使用氣相層析質譜儀 (GC-MS) 分析精油和純露正己烷萃取物之成分並比較其差異。五種樟屬植物精油之成分以含氧萜類和苯丙烷類化合物為主,包含黃樟素、反式肉桂醛、桉葉油醇、丁香酚及香葉醛等,但不同植物的主要成分有明顯差異。純露的主要成分與精油類似,且成分皆為含氧的化合物。五種物種中,除臺灣肉桂外,其餘植物精油均對大腸桿菌有抑制作用。樟樹和土肉桂精油在濃度0.05%可完全抑制大腸桿菌的生長,香桂和胡氏肉桂的抑制濃度則為0.1%。純露的抑菌效果雖不如精油顯著,但是土肉桂和香桂純露,分別在濃度50%和100%時,可抑制90%大腸桿菌的生長。此外,五種精油和純露皆能清除DPPH自由基及還原亞鐵氰離子。其中香桂精油和純露的抗氧化效果最顯著,兩者濃度分別為0.025%及5%時,已將DPPH自由基達100%的清除,而還原亞鐵氰離子之能力,明顯高於其他物種。另一方面,在相同濃度區間下,臺灣肉桂的精油和純露之抗氧化效果皆是最差的。進一步的實驗發現,精油和純露的總酚類含量與還原力測定存在顯著之相關性。

    Essential oils and hydrosols from five Cinnamomum plants, Cinna-momum camphora, Cinnamomoum osmophloeum Kanehira, Cinnamo-mum insulari-montanum Hayata, Cinnamomum subavenium Miq. and Cinnamomum macrostemon Hayata were extracted by steam distillation. Chemical composition was analyzed by Gas chromatography-mass spectrometry (GC-MS). Major components of the essential oils are oxygenated terpenes and phenylpropane compounds, including camphor, cinnamaldehyde, eucalyptol, eugenol, and geranial. However, notable variations were observed among the different species. Hydrosols showed similar components to the corresponding essential oils, consisting mainly of oxygenated compounds. Except for C. insulari-montanum, essential oils from the other four plants exhibited inhibitory effects against E. coli. Essential oils from C. camphora and C. osmophloeum completely ended the growth of E. coli. at 0.05% (v/v), while C. subavenium and C. macro-stemon showed inhibitory effects at 0.1% (v/v). Although hydrosols showed less significant antibacterial effect compared to the essential oils, C. osmophloeum and C. subavenium hydrosols inhibited 90% of E. coli growth at 50% and 100% (v/v), respectively. All five essential oils and hydrosols demonstrated the ability to scavenge DPPH radicals and reduce ferrocyanide. Essential oil and hydrosol from C. subavenium exhibited the most potent antioxidant effects that achieving 100% scavenging of DPPH radicals at 0.025% and 5%, respectively. Further experiments indicated a significant correlation between the total phenolic amount of the essential oils and hydrosols to their reducing power.

    中文摘要 i Abstract ii 第一章 緒論 1 實驗部分 9 第一節 實驗藥品 9 第二節 儀器設備 10 第三節 植物材料 11 第四節 實驗方法 11 一、精油和純露的萃取及製備 11 二、精油和純露成分鑑定 13 三、抗菌實驗 14 四、抗氧化實驗 15 (一) 1,1-diphenyl-2-picrylhydrazyl (DPPH)自由基清除活性測定 15 (二)還原力測定 16 (三)總酚類含量測定 17 第三章 結果與討論 18 第一節 精油和純露之組成 18 一、精油和純露之成分分析 18 二、精油和純露之成分比較 27 第二節 精油和純露之抗菌活性探討與比較 30 第三節 精油和純露之抗氧化活性與總酚類含量 41 一、DPPH自由基清除能力測定 41 二、還原力測定 43 三、總酚類含量測定和相關性 46 結論 54

    1. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils – A review. Food and Chemical Toxicology 2008, 46 (2), 446-475.
    2. Turek, C.; Stintzing, F. C. Stability of Essential Oils: A Review. Comprehensive Reviews in Food Science and Food Safety 2013, 12 (1), 40-53.
    3. Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M. S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology 2019, 2 (2), 49-55.
    4. Adorjan, B.; Buchbauer, G. Biological properties of essential oils: an updated review. Flavour and Fragrance Journal 2010, 25 (6), 407-426.
    5. Raut, J. S.; Karuppayil, S. M. A status review on the medicinal properties of essential oils. Industrial Crops and Products 2014, 62, 250-264.
    6. Varela, N. P.; Friendship, R.; Dewey, C.; Valdivieso, A. Comparison of agar dilution and E-test for antimicrobial susceptibility testing of Campylobacter coil isolates recovered from 80 Ontario swine farms. Canadian Journal of Veterinary Research 2008, 72 (2), 168-174.
    7. Lang, G.; Buchbauer, G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. Flavour and Fragrance Journal 2012, 27 (1), 13-39.
    8. Amat, S.; Baines, D.; Alexander, T. W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Letters in Applied Microbiology 2017, 65 (6), 489-495.
    9. Guimarães, A. C.; Meireles, L. M.; Lemos, M. F.; Guimarães, M. C. C.; Endringer, D. C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24 (13), 2471.
    10. Botelho, M. A.; Nogueira, N. A. P.; Bastos, G. M.; Fonseca, S. G. C.; Lemos, T. L. G.; Matos, F. J. A.; Montenegro, D.; Heukelbach, J.; Rao, V. S.; Brito, G. A. C. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian Journal of Medical and Biological Research 2007, 40 (3), 349-356.
    11. Memar, M. Y.; Raei, P.; Alizadeh, N.; Akbari Aghdam, M.; Kafil, H. S. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Reviews and Research in Medical Microbiology 2017, 28 (2), 63-68.
    12. Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol 2008, 99 (18), 8788-8795.
    13. Kim, Y.-G.; Lee, J.-H.; Kim, S.-I.; Baek, K.-H.; Lee, J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. International Journal of Food Microbiology 2015, 195, 30-39.
    14. Das, B.; Mandal, D.; Dash, S. K.; Chattopadhyay, S.; Tripathy, S.; Dolai, D. P.; Dey, S. K.; Roy, S. Eugenol Provokes ROS-Mediated Membrane Damage-Associated Antibacterial Activity against Clinically Isolated Multidrug-Resistant Staphylococcus aureus Strains. Infectious Diseases: Research and Treatment2016, 9, 11-19.
    15. Šimović, M.; Delaš, F.; Gradvol, V.; Kocevski, D.; Pavlović, H. Antifungal effect of eugenol and carvacrol against foodborne pathogens Aspergillus carbonarius and Penicillium roqueforti in improving safety of fresh-cut watermelon. Journal of Intercultural Ethnopharmacology 2014, 3, 91 - 96.
    16. (16) Park, E.-S.; Bae, I. K.; Kim, H. J.; Lee, S.-E. Novel regulation of aflatoxin B1 biosynthesis in Aspergillus flavus by piperonal. Natural Product Research 2016, 30 (16), 1854-1857.
    17. Firmino, D. F.; Cavalcante, T. T. A.; Gomes, G. A.; Firmino, N. C. S.; Rosa, L. D.; de Carvalho, M. G.; Catunda Jr, F. E. A. Antibacterial and Antibiofilm Activities of Cinnamomum Sp. Essential Oil and Cinnamaldehyde: Antimicrobial Activities. The Scientific World Journal 2018, 2018, 7405736.
    18. Ali, S. M.; Khan, A. A.; Ahmed, I.; Musaddiq, M.; Ahmed, K. S.; Polasa, H.; Rao, L. V.; Habibullah, C. M.; Sechi, L. A.; Ahmed, N. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Annals of Clinical Microbiology and Antimicrobials 2005, 4 (1), 20.
    19. Bassolé, I. H. N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R. C.; Dicko, M. H. Composition and Antimicrobial Activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. Essential Oils and Their Major Monoterpene Alcohols Alone and in Combination. Molecules 2010, 15 (11), 7825-7839.
    20. García-García, R.; López-Malo, A.; Palou, E. Bactericidal Action of Binary and Ternary Mixtures of Carvacrol, Thymol, and Eugenol against Listeria innocua. Journal of Food Science 2011, 76 (2), M95-M100.
    21. Cui, H.; Zhang, X.; Zhou, H.; Zhao, C.; Lin, L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Botanical Studies 2015, 56 (1), 16.
    22. Huang, D. F.; Xu, J. G.; Liu, J. X.; Zhang, H.; Hu, Q. P. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food-related bacteria. Microbiology 2014, 83 (4), 357-365.
    23. Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2020, 25 (1), 33.
    24. Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis 2020, 141, 103980.
    25. Lambert, R. J. W.; Skandamis, P. N.; Coote, P. J.; Nychas, G. J. E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 2001, 91 (3), 453-462.
    26. Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4 (3), 58.
    27. Hyldgaard, M.; Mygind, T.; Meyer, R. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Frontiers in Microbiology 2012, 3, 12.
    28. Cheeseman, K. H.; Slater, T. F. An introduction to free radical biochemistry. British Medical Bulletin 1993, 49 (3), 481-493.
    29. Yin, H.; Xu, L.; Porter, N. A. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chemical Reviews 2011, 111 (10), 5944-5972.
    30. Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging 2007, 2, 219 - 236.
    31. Ito, N.; Fukushima, S.; Tsuda, H. Carcinogenicity and Modification of the Carcinogenic Response by bha, Bht, and Other Antioxidants. CRC Critical Reviews in Toxicology 1985, 15 (2), 109-150.
    32. Additives, E. P. o. F.; Food, N. S. a. t. Scientific Opinion on the re-evaluation of butylated hydroxytoluene BHT (E 321) as a food additive. EFSA Journal 2012, 10 (3), 2588.
    33. Semeniuc, C. A.; Socaciu, M.-I.; Socaci, S. A.; Mureșan, V.; Fogarasi, M.; Rotar, A. M. Chemometric Comparison and Classification of Some Essential Oils Extracted from Plants Belonging to Apiaceae and Lamiaceae Families Based on Their Chemical Composition and Biological Activities. Molecules 2018, 23 (9), 2261.
    34. Djabou, N.; Dib, M. E. A.; Tabti, B.; Costa, J.; Muselli, A. Chemical composition and antioxidant activity of hydrosol extracts obtained by liquid–liquid extraction (LLE) of Daucus muricatus L. Journal of Essential Oil Research 2014, 26 (6), 393-399.
    35. Ündeğer, Ü.; Başaran, A.; Degen, G. H.; Başaran, N. Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food and Chemical Toxicology 2009, 47 (8), 2037-2043.
    36. Aidi Wannes, W.; Mhamdi, B.; Sriti, J.; Ben Jemia, M.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M. E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food and Chemical Toxicology 2010, 48 (5), 1362-1370.
    37. Bag, A.; Chattopadhyay, R. R. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination. PLOS ONE 2015, 10 (7), e0131321.
    38. Villaño, D.; Fernández-Pachón, M. S.; Moyá, M. L.; Troncoso, A. M.; García-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71 (1), 230-235.
    39. Miguel, M. G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15 (12), 9252-9287.
    40. KRINSKY, N. I. The Antioxidant and Biological Properties of the Carotenoidsa. Annals of the New York Academy of Sciences 1998, 854 (1), 443-447.
    41. Santos, J. S.; Alvarenga Brizola, V. R.; Granato, D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chemistry 2017, 214, 515-522.
    42. El-Lateef, H. M. A.; El‐Dabea, T.; Khalaf, M. M.; Abu-Dief, A. M. Recent Overview of Potent Antioxidant Activity of Coordination Compounds. Antioxidants 2023, 12 (2), 213.
    43. van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. Journal of Chromatography A 1963, 11, 463-471.
    44. Zellner, B. d. A.; Bicchi, C.; Dugo, P.; Rubiolo, P.; Dugo, G.; Mondello, L. Linear retention indices in gas chromatographic analysis: a review. Flavour and Fragrance Journal 2008, 23 (5), 297-314.
    45. Andrade, E. H. A.; Alves, C. N.; Guimarães, E. F.; Carreira, L. M. M.; Maia, J. G. S. Variability in essential oil composition of Piper dilatatum L.C. Rich. Biochemical Systematics and Ecology 2011, 39 (4), 669-675.
    46. Jorge A Pino, F. M. F.-F., Ana S Falco, Julio C Pérez, Ivones Hernández, Idania Rodeiro, Miguel D Fernández. Chemical composition and biological activities of essential oil from Ocotea quixos Lam Kosterm leaves grown wild in Ecuador. American Journal of Essential Oils and Natural Products 2018, 6 (1), 31-34.
    47. Vági, E.; Simándi, B.; Suhajda, Á.; Héthelyi, É. Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Research International 2005, 38 (1), 51-57.
    48. Saǧdιç, O. Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT - Food Science and Technology 2003, 36 (5), 467-473.
    49. Gourine, N.; Yousfi, M.; Bombarda, I.; Nadjemi, B.; Stocker, P.; Gaydou, E. M. Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Industrial Crops and Products 2010, 31 (2), 203-208.
    50. Dehpour, A. A.; Ebrahimzadeh, M. A.; Seyed Fazel, N.; Seyed Mohammad, N. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas y Aceites 2009, 60 (4), 405-412.
    51. Huang, D.; Ou, B.; Prior, R. L. The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 2005, 53 (6), 1841-1856.
    52. Ainsworth, E. A.; Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2007, 2 (4), 875-877.
    53. Ahmed, A. F.; Attia, F. A. K.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness 2019, 8 (3), 299-305.
    54. Guo, S.; Geng, Z.; Zhang, W.; Liang, J.; Wang, C.; Deng, Z.; Du, S. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests. International Journal of Molecular Sciences 2016, 17 (11), 1836.
    55. Poudel, D. K.; Rokaya, A.; Ojha, P. K.; Timsina, S.; Satyal, R.; Dosoky, N. S.; Satyal, P.; Setzer, W. N. The Chemical Profiling of Essential Oils from Different Tissues of Cinnamomum camphora L. and Their Antimicrobial Activities. Molecules 2021, 26 (17), 5132.
    56. Lee, S.-H.; Kim, D.-S.; Park, S.-H.; Park, H. Phytochemistry and Applications of Cinnamomum camphora Essential Oils. Molecules 2022, 27 (9), 2695.
    57. Chen, H. P.; Yang, K.; You, C. X.; Lei, N.; Sun, R. Q.; Geng, Z. F.; Ma, P.; Cai, Q.; Du, S. S.; Deng, Z. W. Chemical Constituents and Insecticidal Activities of the Essential Oil of Cinnamomum camphora Leaves against Lasioderma serricorne. Journal of Chemistry 2014, 2014, 963729.
    58. Munda, S.; Dutta, S.; Pandey, S. K.; Sarma, N.; Lal, M. Antimicrobial Activity of Essential Oils of Medicinal and Aromatic Plants of the North East India: A Biodiversity Hot Spot. Journal of Essential Oil Bearing Plants 2019, 22 (1), 105-119.
    59. Pino, J. A.; Fuentes, V. Leaf Oil of Cinnamomum camphora (L.) J. Presl. from Cuba. Journal of Essential Oil Research 1998, 10 (5), 531-532.
    60. 李漢中、鄭森松、劉如芸、張上鎮。 不同地理品系土肉桂葉部精油之化學多態性。不同地理品系土肉桂葉部精油之化學多態性。中華林學季刊 2003,36:4=133卷,頁411-422。
    61. Palaniappan, K.; Holley, R. A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology 2010, 140 (2), 164-168.
    62. Marei, G. I. K.; Abdelgaleil, S. A. M. Antifungal potential and biochemical effects of monoterpenes and phenylpropenes on plant. Plant protection science 2017, 54, 9-16.
    63. Lee, J.-E.; Jung, M.; Lee, S.-C.; Huh, M.-J.; Seo, S.-M.; Park, I.-K. Antibacterial mode of action of trans-cinnamaldehyde derived from cinnamon bark (Cinnamomum verum) essential oil against Agrobacterium tumefaciens. Pesticide Biochemistry and Physiology 2020, 165, 104546.
    64. Tung, Y.-T.; Chua, M.-T.; Wang, S.-Y.; Chang, S.-T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology 2008, 99 (9), 3908-3913.
    65. Liu, X. C.; Cheng, J.; Zhao, N. N.; Liu, Z. l. Insecticidal Activity of Essential Oil of Cinnamomum cassia and its Main Constituent, trans-Cinnamaldehyde, against the Booklice, Liposcelis bostrychophila. Tropical Journal of Pharmaceutical Research 2014, 13, 1697.
    66. Cheng, S.-S.; Liu, J.-Y.; Huang, C.-G.; Hsui, Y.-R.; Chen, W.-J.; Chang, S.-T. Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresource Technology 2009, 100 (1), 457-464.
    67. Subash Babu, P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde—A potential antidiabetic agent. Phytomedicine 2007, 14 (1), 15-22.
    68. 羅啟元。樟屬植物葉子精油之抗發炎活性(碩士論文)。臺灣臺灣大學森林環境暨資源學研究所。2012
    69. Ho, C. L.; Wang, E. I. C.; Wei, X. T.; Lu, S. Y.; Su, Y. C. Composition and bioactivities of the leaf essential oils of Cinnamomum subavenium Miq. from Taiwan. Journal of essential oil research : JEOR. 2008, 20 (4), 328-334.
    70. Liao, P.-C.; Yang, T.-S.; Chou, J.-C.; Chen, J.; Lee, S.-C.; Kuo, Y.-H.; Ho, C.-L.; Chao, L. K.-P. Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. Journal of Functional Foods 2015, 19, 248-258.
    71. Ho, Y.-S.; Wu, J.-Y.; Chang, C.-Y. A New Natural Antioxidant Biomaterial from Cinnamomum osmophloeum Kanehira Leaves Represses Melanogenesis and Protects against DNA Damage. Antioxidants 2019, 8 (10), 474.
    72. Tabti, L.; Dib, M. E. A.; Djabou, N.; Benyelles, N. g.; Paolini, J.; Costa, J.; Muselli, A. Control of fungal pathogens of Citrus sinensis L by essential oil and hydrosol of Thymus capitatus L. Journal of applied botany and food quality 2014, 87, 279-285.
    73. Tornuk, F.; Cankurt, H.; Ozturk, I.; Sagdic, O.; Bayram, O.; Yetim, H. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology 2011, 148 (1), 30-35.
    74. Değirmenci, H.; Erkurt, H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. Journal of Infection and Public Health 2020, 13 (1), 58-67.
    75. Ulusoy, S.; Boşgelmez-Tınaz, G.; Seçilmiş-Canbay, H. Tocopherol, Carotene, Phenolic Contents and Antibacterial Properties of Rose Essential Oil, Hydrosol and Absolute. Current Microbiology 2009, 59 (5), 554-558.
    76. Verma, R. S.; Padalia, R. C.; Chauhan, A. Analysis of the Hydrosol Aroma of Indian Oregano. Medicinal and Aromatic plants 2012, 1, 1-3.
    77. Verma, S. K.; Goswami, P.; Verma, R. S.; Padalia, R. C.; Chauhan, A.; Singh, V. R.; Darokar, M. P. Chemical composition and antimicrobial activity of bergamot-mint (Mentha citrata Ehrh.) essential oils isolated from the herbage and aqueous distillate using different methods. Industrial Crops and Products 2016, 91, 152-160.
    78. Garneau, F.-X.; Collin, G.; Gagnon, H.; Pichette, A. Chemical Composition of the Hydrosol and the Essential Oil of Three Different Species of the Pinaceae Family : Picea glauca (Moench) Voss., Picea mariana (Mill.) B.S.P., and Abies balsamea (L.) Mill. Journal of Essential Oil Bearing Plants 2012, 15 (2), 227-236.
    79. Rajeswara Rao, B. R.; Kaul, P. N.; Syamasundar, K. V.; Ramesh, S. Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil. Bioresource Technology 2002, 84 (3), 243-246.
    80. Hung, T. T., P.; Viet, H.; Lan, N.; Ngan, L.; Hieu, T. In Vitro Antimicrobial Activity of Hydrosol from Litsea Cubeba (Lour.) Pers. Against Helicobacter Pylori and Candida Albicans. Biomedical Research and Therapy 2020, 7, 3819-3828.
    81. Tomi, K.; Kitao, M.; Konishi, N.; Murakami, H.; Matsumura, Y.; Hayashi, T. Enantioselective GC–MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols. Bioscience, Biotechnology, and Biochemistry 2016, 80 (5), 840-847.
    82. Ieri, F.; Cecchi, L.; Giannini, E.; Clemente, C.; Romani, A. GC-MS and HS-SPME-GC×GC-TOFMS Determination of the Volatile Composition of Essential Oils and Hydrosols (By-Products) from Four Eucalyptus Species Cultivated in Tuscany. Molecules 2019, 24 (2), 226.
    83. Li, X.; Shen, D.; Zang, Q.; Qiu, Y.; Yang, X. Chemical Components and Antimicrobial Activities of Tea Tree Hydrosol and Their Correlation With Tea Tree Oil. Natural Product Communications 2021, 16 (9), 1-7.
    84. Nogueira, J. O. e.; Campolina, G. A.; Batista, L. R.; Alves, E.; Caetano, A. R. S.; Brandão, R. M.; Nelson, D. L.; Cardoso, M. d. G. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiology Letters 2021, 368 (9).
    85. Ultee, A.; Slump, R. A.; Steging, G.; Smid, E. J. Antimicrobial Activity of Carvacrol toward Bacillus cereus on Rice. Journal of Food Protection 2000, 63 (5), 620-624.
    86. Guarda, A.; Rubilar, J. F.; Miltz, J.; Galotto, M. J. The antimicrobial activity of microencapsulated thymol and carvacrol. International Journal of Food Microbiology 2011, 146 (2), 144-150.
    87. Khayyat, S. A.; Al-Zahrani, S. H. Thermal, photosynthesis and antibacterial studies of bioactive safrole derivative as precursor for natural flavor and fragrance. Arabian Journal of Chemistry 2014, 7 (5), 800-804.
    88. Pei, R.-s.; Zhou, F.; Ji, B.-p.; Xu, J. Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. coli with an Improved Method. Journal of Food Science 2009, 74 (7), M379-M383.
    89. Joshi, R. K. Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of the Essential Oils of Ocimum Gratissimum, O. Sanctum and their Major Constituents. Indian Journal of Pharmaceutical Sciences 2013, 75, 457 - 462.
    90. Abdellatif, F.; Boudjella, H.; Zitouni, A.; Hassani, A. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI Journal 2014, 13, 772 - 781.
    91. Herman, A.; Tambor, K.; Herman, A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Current Microbiology 2016, 72 (2), 165-172.
    92. Koutsoudaki, C.; Krsek, M.; Rodger, A. Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia lentiscus Var. chia. Journal of Agricultural and Food Chemistry 2005, 53 (20), 7681-7685.
    93. Gill, A. O.; Holley, R. A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology 2006, 108 (1), 1-9.
    94. Gill, A. O.; Holley, R. A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International Journal of Food Microbiology 2006, 111 (2), 170-174.
    95. Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196-202.
    96. Kaur, C.; Kapoor, H. C. Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology 2002, 37 (2), 153-161.
    97. Saeed, N.; Khan, M. R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine 2012, 12 (1), 221.
    98. Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry 2009, 57 (5), 1768-1774.
    99. Balogh, E.; Hegedűs, A.; Stefanovits-Bányai, É. Application of and correlation among antioxidant and antiradical assays for characterizing antioxidant capacity of berries. Scientia Horticulturae 2010, 125 (3), 332-336.
    100. Ao, C.; Li, A.; Elzaawely, A. A.; Xuan, T. D.; Tawata, S. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Control 2008, 19 (10), 940-948.
    101. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis 2014, 22 (3), 296-302.
    102. Babbar, N.; Oberoi, H. S.; Uppal, D. S.; Patil, R. T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Research International 2011, 44 (1), 391-396.

    下載圖示
    QR CODE