研究生: |
李洹 Huan Lee |
---|---|
論文名稱: |
氧化釔閘極介電層之電性與漏電流機制研究 Electrical Properties and Leakage Current Mechanism of Y2O3 Gate Dielectrics |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 程金保 Cheng, Ching-Pao |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 氧化釔 、鋁 、濺鍍 |
英文關鍵詞: | Y2O3, Al, sputter |
論文種類: | 學術論文 |
相關次數: | 點閱:163 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗之中,我們成功地製作了Al/Y2O3/p-Si的MOS電容器,我們使用射頻濺鍍法沉積Y2O3薄膜其厚度為7 nm,沉積完後再分別做650、750和850 oC的快速熱退火,最後再沉積Al當作電極。由X-ray繞射儀的分析比較不同退火溫度下的Y2O3薄膜,發現在做完850 oC的快速熱退火之後Y2O3薄膜沒有結晶的產生,顯示Y2O3這個材料有很高的結晶溫度,並且隨著退火溫度的增加在2θ=55o的峰值也跟著上升,其中55o的峰值指的是矽的金屬氧化物。接著利用X-ray光電子能譜儀進行成份的分析,由分析的結果得知的確有矽的金屬氧化物的存在,並且隨著退火溫度的上升,矽的金屬氧化物的含量也是有增加的。
接下來則是對Y2O3薄膜進行C-V和I-V的量測,首先是C-V量測的結果,隨著退火溫度的上升所量測到的電容值會降低,計算得到的介電常數也跟著下降。其原因是因為由於有矽的金屬氧化物的產生,而矽的金屬氧化物本身的介電常數較低,所以有矽的金屬氧化物的產生會造成整體的介電常數下降。另外I-V的量測結果則顯示,隨著退火溫度的上升所量測到的漏電流會降低,其退火溫度為650和850 oC所量測到的電流值分別為4.56×10-1 A/cm2和3.43×10-2 A/cm2。而原因可能是因為有矽的金屬氧化物的產生,而造成整體的厚度增加使得漏電流下降。
Ultra-thin yttrium oxide (Y2O3) films were deposited on p-Si(100) substrates by RF sputtering in argon (Ar) ambient at room temperature. The physical thickness of the films was around 7 nm. After deposition, a post-deposition annealing (PDA) in nitrogen (N2) ambient was then performed from 650 to 850 oC. The chemical bonding states and depth profiles of the films were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray reflectivity (XRR),respectively. The crystalline phase of the films was analyzed by X-ray diffraction (XRD). For electrical characterization, aluminum (Al) was deposited as the gate electrode to form the MOS structure. Electrical characterization consisted of high frequency C-V(capacitance-voltage) and J-V (current density-voltage) measurements. According to the XRD patterns, Y2O3 films emain amorphous after 850 oC annealing. Moreover, also confirmed by XPS results, the formation of yttrium silicates (YSiOx) was observed after 650 oC annealing, and the silicate thickness increases with the annealing temperature. It is also suggested that the interfacial layer YSiOx dominates the gate leakage current of the MOS capacitors. As a result, unlike most of the high-κ gate insulators, the gate leakage current density decreases from 4.56×10-1 A/cm2 to 3.43×10-2 A/cm2 at Vg = -2.5 V as the annealing temperature increases from 650 to 850 oC.
[1] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2007).
[2] B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Electron Device Lett. 27, 606 (1980).
[3] 劉傳璽、陳進來,“半導體元件物理與製程理論與實務”,五南文化出版社,(2006)。
[4] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, Characteristics of the surface state charge (Qss) of thermally oxidized silicon, J. Electrochem. Soc. 114, 266 (1967).
[5] G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-k gate dielectrics: current status and materials properties considerations, J. Appl. Phys. 89, 5243 (2001).
[6] J. Robertson, Electronic structure and band offsets in high-k oxide, International Workshop on Gate Insulator (IWGI), 76 (2001).
[7] J. K. Yang, W. S. Kim, and H. H. Park, Chemical bonding states and energy band gap of SiO2 incorporated La2O3 films on n-GaAs (001), Thin Solid Films 494, 311 (2006).
[8] L. G. Gao, K. B. Yin, Y. D. Xia, L. Chen, H. X. Guo, L. Shi, J. Yin, and Z.G. Liu, Effect of NH3 and N2 annealing on the interfacial and electrical characteristics of La2O3 films grown on fully depleted SiGe on insulator substrates, J. Phys. D: Appl. Phys. 42, 015306 (2009).
[9] V. Capodieci, F. Wiest, T. Sulima, J. Schulze, and I. Eisele, Examination and evaluation of La2O3 as gate dielectric for sub-100 nm CMOS and DRAM technology, Microelectron. Reliab. 45, 937 (2005).
[10] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, Electrical Characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å, IEEE Electron Device Lett. 21, 7 (2000).
[11] J. Song, K. Kakushima, P. Ahmet, K. Tsutsui, N. Sugii, T. Hattori, and H. Iwai, Post metallization annealing study in La2O3/Ge MOS structure, Microelectron. Eng. 86, 1638 (2009).
[12] H. W. Chen, F. C. Chiu, C. H. Liu, S. Y. Chen, H. S. Huang, P. C. Juan, and H. L. Hwang, Interface characterization and current conduction in HfO2 gated MOS capacitors, Appl. Surf. Sci. 254, 6112 (2008).
[13] J. Robertson, Band offsets of wide band gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B. 18, 1785 (2000).
[14] Y. S. Lin, R. Puthenkovilakam, and J. P. Chang, Dielectric property and thermal stability of HfO2 on silicon, Appl. Phys. Lett. 81, 11 (2002).
[15] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Electron Device Lett. 21, 4 (2000).
[16] J. S. Jung, J. Y. Kwon, W. Xianyu, and T. Noguchi, Study of HfO2 high-k gate oxide for low temperature poly-Si TFT, J. Korean Phys. Soc. 48, 32 (2006).
[17] S. W. Jeong, H. J. Lee, K. S. Kim, M. T. You, Y. Roh, T. Noguchi,W. Xianyu, and J. Jung, HfO2 gate insulator formed by atomic layer deposition for thin film transistors, Thin Solid Films 515, 5109 (2007).
[18] B. Lee, K. J. Choi, A. Hande, M. J. Kim, R. M. Wallace, J. Kim, Y.Senzaki, D. Shenai, H. Li, M. Rousseau, and J. Suydam, A novel thermally stable zirconium amidinate ALD precursor for ZrO2 thin films, Microelectron. Eng. 86, 272 (2009).
[19] M. K. Bera, S. Chakraborty, S. Saha, D. Paramanik, S. Varma, S.Bhattacharya, and C. K. Maiti, High frequency characterization and continuum modeling of ultrathin high-k (ZrO2) gate dielectrics on strained-Si, Thin Solid Films 504, 183 (2006).
[20] J. P. Chang and Y. S. Lin, Highly conformal ZrO2 deposition for dynamic random access memory application, J. Appl. Phys. 90, 2964 (2001).
[21] K. Yim, Y. Park, A. Park, N. Cho, and C. Lee, Electrical properties of sputter deposited ZrO2 based Pt/ZrO2/Si capacitors, J. Mater. Sci. Technol. 22, 6 (2006).
[22] H. S. Choi, K. S. Seol, D. Y. Kim, J. S. Kwak, C. S. Son, and I. H. Choi, Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates, Vacuum 80, 310 (2005).
[23] A. P. Huang, Z. F. Di, K. Y. Fu, and P. K. Chu, Improvement of interfacial and microstructure properties of high-k ZrO2 thin films fabricated by filtered cathodic arc deposition using nitrogen incorporation, Surf. Coat. Technol. 201, 8282 (2007).
[24] J. Lappalainen, D. Kek, and H. L. Tuller, High carrier density CeO2 dielectrics implications for MOS devices, J. Eur. Ceram. Soc. 24, 1459 (2004).
[25] F. C. Chiu and C. M. Lai, Optical and electrical characterizations of cerium oxide thin films, J. Phys. D: Appl. Phys. 43, 075104 (2010).
[26] H. J. Beie, Oxygen gas sensors based on CeO2 thick and thin films, Sens. Actuators B 4, 393 (1991).
[27] R. N. Blumenthal, F. S. Brugner, and J. E. Garnier, The electrical conductivity of CaO doped nonstoichiometric cerium dioxide from 700 oC to 1500 oC, Solid State Sci. 120, 1230 (1973).
[28] J. Kang, K. Xun, X. Liu, R. Han, Y. Wang, D. P. Yu, G. J. Lian, G. C. Xiong, and S. C. Wu, Interfacial and structural characteristics of CeO2 films on silicon with a nitrided interface formed by nitrogen ion beam bombardment, Thin Solid Films 416, 122 (2002).
[29] K. Karakaya, B. Barcones, Z. M. Rittersma, J. G. M. V. Berkum, M. A. Verheijen, G. Rijnders, and D. H. A. Blank, Electrical and structural characterization of PLD grown CeO2–HfO2 laminated high-k gate dielectrics, Mater. Sci. Semicond. Process. 9, 1061 (2006).
[30] P. d. Rouffignac, J. S. Park, and R. G. Gordon, Atomic layer deposition of Y2O3 thin films from yttrium tris(N,N' diisopropylacetamidinate) and water, Chem. Mater. 17, 4808 (2005).
[31] K. H. Kwon, C. K. Lee, J. K. Yang, S. G. Choi, H. J. Chang, H. Jeon, and H. H. Park, Effective formation of interface controlled Y2O3 thin film on Si(100) in a metal–(ferroelectric)–insulator–semiconductor structure, Microelectron. Eng. 85, 1781 (2008).
[32] M. H. Cho, D. H. Ko, J. G. Seo, S. W. Whangbo, K. Jeong, I. W. Lyo, C. N. Whang, D. Y. Noh, and H. J. Kim, Characteristics of Y2O3 films on Si(111) grown by oxygen-ion beam-assisted deposition, Thin Solid Films 382, 288 (2001).
[33] M. Spankova, I. Vavra, S. Chromik, S. Harasek, R. Luptak, J. Soltys, and K. Husekova, Structural properties of Y2O3 thin films grown on Si(1 0 0) and Si(1 1 1) substrates, Mater. Sci. Eng. 116, 30 (2005).
[34] R. J. Gaboriaud, F. Pailloux, P. Guerin, and F. Paumier, Effect of surface pretreatments on interface structure during formation of ultra thin yttrium silicate dielectric films on silicon, Thin Solid Films 400, 106 (2001).
[35] R. N. Sharma, S. T. Lakshmikumar, and A. C. Rastogi, Electrical behaviour of electron beam evaporated yttrium oxide thin films on silicon, Thin Solid Films 199, 1 (1991).
[36] M. H. Cho, D. H. Ko, Y. G. Choi, I. W. Lyo, K. Jeong, and C. N. Whang, Effects of SiO2 overlayer at initial growth stage of epitaxial Y2O3 film growth, J. Cryst. Growth. 220, 501 (2001).
[37] S. K. Kanga, D. H. Koa, E. H. Kim, M. H. Cho, and C. N. Whang, Interfacial reactions in the thin film Y2O3 on chemically oxidized Si(100) substrate systems, Thin Solid Films 353, 8 (1999).
[38] F. Paumier and R. J. Gaboriaud, Interfacial reactions in Y2O3 thin films deposited on Si(100), Thin Solid Films 441, 307 (2003).
[39] K. Nakagawa, K. Miyauchi, K. Kakushima, T. Hattori, K. Tsutsui, and H. Iwai, The effect of Y2O3 buffer layer for La2O3 gate dielectric film, Proceedings of the European Solid-State Device Research Conference (ESSDERC), 387 (2005).
[40] Z. M. Wang, J. X. Wu, Q. Fang, and J. Y. Zhang, Photoemission study of interfacial reactions during annealing of ultrathin yttrium on SiO2/Si(1 0 0), Appl. Surf. Sci. 239, 464 (2005).
[41] M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Chng, Z. Ye, and Z. S. Hu, Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure, Trans. Nonferrous Met. Soc. China 16, 63 (2006).
[42] K. Matsunouchi, N. Komatsu, C. Kimura, H. Aoki, and T. Sugino, Growth and properties of YAlO film synthesized by RF magnetron sputtering, Appl. Surf. Sci. 255, 5021 (2009).
[43] L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, Metal-oxide-semiconductor devices with molecular beam epitaxy-grown Y2O3 on Ge, J. Cryst. Growth. 311, 2195 (2009).
[44] P. S. Das, G. K. Dalapati, D. Z. Chi, A. Biswas, and C. K. Maiti, Characterization of Y2O3 gate dielectric on n-GaAs substrates, Appl. Surf. Sci. 256, 2245 (2009).
[45] 行政院國家科學委員會,“真空技術與應用”,儀器科技研究中心,
(2008)。
[46] 白木靖寬,“薄膜工程學”,全華科技圖書股份有限公司,(2006)。
[47] 汪建民,“材料分析”,中國材料科學學會,(2001)。
[48] 王明光、王敏昭,“實用儀器分析”,合記圖書出版社,(2003)。
[49] L. J. Wu and J. M. Wu, Reduced leakage current and conduction mechanisms of sputtered platinum-doped lead barium zirconate thin films, J. Phys. D: Appl. Phys. 40, 4948 (2007).
[50] S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, and R. Liu, High-temperature conduction behaviors of HfO2 /TaN-based metal-insulator-metal capacitors, J. Appl. Phys. 102, 073706 (2007).