研究生: |
廖振成 Liao, Chen-Cheng |
---|---|
論文名稱: |
第一原理模擬在材料開發的應用:(I) 錫碘化物鈣鈦礦的介電性質分析,(II) 銅單原子催化劑在鈀表面上的動力學分析,以及 (III) 電場於顯式溶劑之電化學模擬 First-Principle Modeling for the Materials Discovery: (I) Dielectric Profiles of Tin Iodide Perovskite, (II) Kinetic Analysis of Single Cu Atom Catalyst on Pd surface, and (III) Field-Dependent Explicit Electrochemical Simulations |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
口試委員: |
江志強
Jiang, Jyh-Chiang 周子勤 Chou, Tsu-Chin 高橋開人 Takahashi, Kaito 張鈞智 Chang, Chun-Chih 蔡明剛 Tsai, Ming-Kang |
口試日期: | 2023/10/27 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 密度泛函理論 、介電常數 、一氧化碳二聚化 、單原子催化劑 、顯式溶劑模型 、外加靜電力場 |
英文關鍵詞: | DFT, Dielectric constant, CO dimerization, Single-atom catalyst, Explicit solvation model, External electric force field |
DOI URL: | http://doi.org/10.6345/NTNU202301805 |
論文種類: | 學術論文 |
相關次數: | 點閱:195 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在材料科學與凝態物理領域不斷演進中,第一原理模擬已經在方法上具有非常重要的地位。這些模擬由量子力學出發,不依靠經驗參數,為我們提供了在微觀尺度上研究材料原子組成和電子性質的方式。第一原理模擬不僅提供了實驗上無法觀測到的微觀現象,也在於它們具有普遍地提供預測能力。隨著人工智慧(AI)的出現,AI驅動的算法與基於第一原理的模擬之間的協同作用已帶來了加速材料發現和設計的新時代。這種融合不僅有助於了解複雜現象,並有助於促進新一代設備的設計。基於第一原理的模擬和AI的緊密結合不僅是互補的;它正在革命性地改變我們在21世紀如何接近、理解和利用材料的潛力。
第一部分 (I) 錫碘化物鈣鈦礦的介電性質分析
錫基鈣鈦礦是一種非常有潛力的材料,用以取代傳統具有毒性的鹵化鉛鈣鈦礦,但其不穩定性限制了其發光性能。然而,二維的錫基鈣鈦礦能夠提升激子束縛能進而提升光致發光量子產率(PLQY)。除此之外,二維錫基鈣鈦礦中的有機層與無機層之介電常數差異亦會影響機子束縛能。本篇將透過密度泛函理論探討以下二維錫基鈣鈦礦:(TEA)2SnI4, (PEA)2SnI4, (p-FPEA)2SnI4, (p-ClPEA)2SnI4 以及(p-BrPEA)2SnI4之介電常數,並探討其與PLQY之關係。其結果顯示改變陽離子組成,並不會大幅地影響陽離子層之介電常數,反而會誘導陰離子層的介電常數產生變化。
第二部分 (II) 電場於顯式溶劑之電化學模擬
本研究系統性評估了對Cu(111)表面上電化學CO二聚化的顯式溶劑模型。在存在吸附物和銅表面的情況下,對溶劑的組成在室溫下進行了分子動力學採樣。本研究通過考慮引入外加平板電場,對CO二聚化反應路徑上的能量和功函數進行探討。我們觀察到,即使在引入外加電場的情況下,使用定電位修正,CO二聚化過程的活化能和反應能仍然保持相近的數值,分別約為0.95電子伏特和0.35電子伏特。這一發現在顯式溶劑模擬下,再次確認了CO二聚化主要是一個由熱驅動的過程。此外,引入外加電場範圍從+0.2 V/Å到-0.2 V/Å,在pH = 7條件下,導致有效的電化學電位相對於標準氫電極從+1.766 V變化到-0.565 V。
第三部分 (III) 銅單原子催化劑在鈀表面上的動力學分析
本研究焦點是通過在Pd(111)表面上之單原子銅催化劑進行電化學CO和CHO耦合過程,探討C-C鍵形成進行計算。我們發現了過程中穩定的中間體,即[CuO2](CO)2,在暴露於CO氣體分子時被視為一種四牙和四面體的中間產物。在本篇電化學計算中,將CO團氫化為CHO的能量需求為0.87電子伏特,其低於常規Cu表面相應步驟的能量。本研究觀察到從頂層Pd原子到吸附物分子的電荷轉移效應,尤其是在過渡態處。這一現象導致了0.67電子伏特的C-C鍵形成能障。此外,C-C鍵形成的為放熱反應,為-0.21電子伏特,代表了利於生成C-C鍵的化學平衡條件。最後,由動力學建模分析討論氣體分子(CO、CO2、O2)的溫度和壓力影響,我們發現[CuO2]*(CO)2中間體在室溫下大量存在,並在乾燥的環境條件下表現出很好的化學耐受性。
In the evolving field of materials science and condensed matter physics, first-principles simulations have become an essential methodology. Rooted in quantum mechanics and without empirical parameters, these simulations offer insights into the behaviors of materials at atomic and electronic levels. Their strength not only comes from eliminating experimental input but also in delivering reliable predictions. With the rise of artificial intelligence (AI), the collaboration between AI-driven algorithms and first-principles simulations has initiated an era of rapid materials discovery and design. This combination aids in understanding complex phenomena and in designing advanced devices. The collaboration between first-principles simulations and AI is reshaping how we explore, comprehend, and utilize materials in the 21st century.
Part (I) Dielectric Profiles of Tin Iodide Perovskite
Tin-based perovskites hold great potential as a replacement for traditional toxic lead halide perovskites, but their instability has limited their luminescent performance. However, two-dimensional tin-based perovskites have the capability to enhance exciton binding energy and, consequently, improve photoluminescence quantum yield (PLQY). Additionally, the difference in dielectric constants between the organic and inorganic layers in two-dimensional tin-based perovskites also affects exciton binding energy. This study employs density functional theory to investigate the dielectric constants of the following two-dimensional tin-based perovskites: (TEA)2SnI4, (PEA)2SnI4, (p-FPEA)2SnI4, (p-ClPEA)2SnI4,and (p-BrPEA)2SnI4, and explores their relationship with PLQY. The results demonstrate that altering the cation composition does not significantly impact the dielectric constants of the cation layers but induces variations in the dielectric constants of the anion layers.
Part (II) Field-Dependent Explicit Electrochemical Simulations
This study presents a systematic assessment of the explicit modeling of electrochemical CO dimerization on the Cu(111) surface. Solvation configurations were sampled at room temperature in the presence of adsorbates and the Cu surface. The study characterizes the energetics and work functions along the CO dimerization pathway, considering plate-type electric force fields. It is observed that the activation barriers and reaction energies for the CO dimerization process remain relatively constant, around 0.95 eV and 0.35 eV, respectively, even when external electrostatic perturbations are introduced, using the constant-potential correction. This finding, supported by explicit simulations, reaffirms that CO dimerization is primarily a thermally-driven process. Furthermore, applying electric force fields ranging from +0.2 V/Å to -0.2 V/Å leads to effective electrochemical potential changes from +1.766 to -0.565 V vs. the standard hydrogen electrode under pH = 7 conditions.
Part (III) Kinetic Analysis of Single Cu Atom Catalyst on Pd surface
This study is primarily concerned with the computational characterization of the electrochemical formation of C-C bonds via the coupling process of CO and CHO, utilizing a dioxo-coordinated Cu single atom site ([CuO2]) supported on a Pd(111) surface. A stable intermediate, denoted as [CuO2](CO)2, was identified as a tetradentate and tetrahedral species that forms when exposed to CO gaseous molecules. Electrochemically, the hydrogenation of the carbonyl group to CHO was found to require only 0.87 eV of energy, which is conceivably lower than the corresponding step on conventional Cu surfaces. This study also observed a significant charge transfer effect from the top layer Pd atoms to the adsorbate moiety, particularly at the transition state (TS) structure. As a result, an accessible barrier for C-C bond formation at 0.67 eV was observed. Furthermore, the reaction energy for C-C bond formation was found to be exothermic at -0.21 eV, indicating a favorable chemical equilibrium condition. Taking into account the temperature and pressure effects of gaseous molecules (CO, CO2, O2), the [CuO2]*(CO)2 intermediate was found to be substantially populated at room temperature and exhibited chemical resilience under dry ambient conditions, as suggested by the results of kinetic modeling.
1. https://www.c2es.org/content/international-emissions/.
2. IEA CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022.
3. REN21 Renewables 2023 Global Status Report Collection; 2023.
4. Hong, W. Y., A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology 2022, 3, 100044. DOI:https://doi.org/10.1016/j.ccst.2022.100044.
5. Kheirinik, M.; Ahmed, S.; Rahmanian, N. Comparative Techno-Economic Analysis of Carbon Capture Processes: Pre-Combustion, Post-Combustion, and Oxy-Fuel Combustion Operations Sustainability [Online], 2021.
6. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K., The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575 (7781), 87-97. DOI:10.1038/s41586-019-1681-6.
7. Patricio, J.; Angelis-Dimakis, A.; Castillo-Castillo, A.; Kalmykova, Y.; Rosado, L., Method to identify opportunities for CCU at regional level — Matching sources and receivers. Journal of CO2 Utilization 2017, 22, 330-345. DOI:https://doi.org/10.1016/j.jcou.2017.10.009.
8. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science 2012, 5 (5), 7050-7059. DOI:10.1039/C2EE21234J.
9. Greeley, J., Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. Annual Review of Chemical and Biomolecular Engineering 2016, 7 (1), 605-635. DOI:10.1146/annurev-chembioeng-080615-034413.
10. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871. DOI:10.1103/PhysRev.136.B864.
11. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), A1133-A1138. DOI:10.1103/PhysRev.140.A1133.
12. Schleder, G. R.; Padilha, A. C. M.; Acosta, C. M.; Costa, M.; Fazzio, A., From DFT to machine learning: recent approaches to materials science–a review. Journal of Physics: Materials 2019, 2 (3), 032001. DOI:10.1088/2515-7639/ab084b.
13. Akkerman, Q. A.; Manna, L., What Defines a Halide Perovskite? ACS Energy Letters 2020, 5 (2), 604-610. DOI:10.1021/acsenergylett.0c00039.
14. Rosales, B. A.; Hanrahan, M. P.; Boote, B. W.; Rossini, A. J.; Smith, E. A.; Vela, J., Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy. ACS Energy Letters 2017, 2 (4), 906-914. DOI:10.1021/acsenergylett.6b00674.
15. Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y., Lead halide perovskites for photocatalytic organic synthesis. Nature Communications 2019, 10 (1), 2843. DOI:10.1038/s41467-019-10634-x.
16. Miyata, K.; Atallah, T. L.; Zhu, X. Y., Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Science Advances 3 (10), e1701469. DOI:10.1126/sciadv.1701469.
17. Ren, M.; Qian, X.; Chen, Y.; Wang, T.; Zhao, Y., Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics. Journal of Hazardous Materials 2022, 426, 127848. DOI:https://doi.org/10.1016/j.jhazmat.2021.127848.
18. Sakhatskyi, K.; John, R. A.; Guerrero, A.; Tsarev, S.; Sabisch, S.; Das, T.; Matt, G. J.; Yakunin, S.; Cherniukh, I.; Kotyrba, M.; Berezovska, Y.; Bodnarchuk, M. I.; Chakraborty, S.; Bisquert, J.; Kovalenko, M. V., Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites. ACS Energy Letters 2022, 7 (10), 3401-3414. DOI:10.1021/acsenergylett.2c01663.
19. Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z., Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Accounts of Materials Research 2021, 2 (4), 210-219. DOI:10.1021/accountsmr.0c00111.
20. Abate, A., Stable Tin-Based Perovskite Solar Cells. ACS Energy Letters 2023, 8 (4), 1896-1899. DOI:10.1021/acsenergylett.3c00282.
21. Wang, A.; Yan, X.; Zhang, M.; Sun, S.; Yang, M.; Shen, W.; Pan, X.; Wang, P.; Deng, Z., Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process. Chemistry of Materials 2016, 28 (22), 8132-8140. DOI:10.1021/acs.chemmater.6b01329.
22. Wang, A.; Guo, Y.; Muhammad, F.; Deng, Z., Controlled Synthesis of Lead-Free Cesium Tin Halide Perovskite Cubic Nanocages with High Stability. Chemistry of Materials 2017, 29 (15), 6493-6501. DOI:10.1021/acs.chemmater.7b02089.
23. Han, X.; Zheng, Y.; Chai, S.; Chen, S.; Xu, J., 2D organic-inorganic hybrid perovskite materials for nonlinear optics. 2020, 9 (7), 1787-1810. DOI:doi:10.1515/nanoph-2020-0038.
24. Shevchenko, E. A.; Nechaev, D. V.; Jmerik, V. N.; Kaibyshev, V. K.; Ivanov, S. V.; Toropov, A. A., Enhanced photoluminescence efficiency in AlGaN quantum wells with gradient-composition AlGaN barriers. Journal of Physics: Conference Series 2016, 741 (1), 012118. DOI:10.1088/1742-6596/741/1/012118.
25. Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L., Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2016, 138 (9), 2941-2944. DOI:10.1021/jacs.5b13470.
26. Zheng, K.; Zhu, Q.; Abdellah, M.; Messing, M. E.; Zhang, W.; Generalov, A.; Niu, Y.; Ribaud, L.; Canton, S. E.; Pullerits, T., Exciton Binding Energy and the Nature of Emissive States in Organometal Halide Perovskites. The Journal of Physical Chemistry Letters 2015, 6 (15), 2969-2975. DOI:10.1021/acs.jpclett.5b01252.
27. Wong, A. B.; Bekenstein, Y.; Kang, J.; Kley, C. S.; Kim, D.; Gibson, N. A.; Zhang, D.; Yu, Y.; Leone, S. R.; Wang, L.-W.; Alivisatos, A. P.; Yang, P., Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. Nano Letters 2018, 18 (3), 2060-2066. DOI:10.1021/acs.nanolett.8b00077.
28. Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A., Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10 (8), 7830-7839. DOI:10.1021/acsnano.6b03496.
29. Jagielski, J.; Kumar, S.; Yu, W.-Y.; Shih, C.-J., Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Materials Chemistry C 2017, 5 (23), 5610-5627. DOI:10.1039/C7TC00538E.
30. Takagi, H.; Kunugita, H.; Ema, K., Influence of the image charge effect on excitonic energy structure in organic-inorganic multiple quantum well crystals. Physical Review B 2013, 87 (12), 125421. DOI:10.1103/PhysRevB.87.125421.
31. An illustration of the frequency response of various dielectric mechanisms in terms of the real and imaginary parts of the permittivity. https://web.archive.org/web/20060118002845/http://www.psrc.usm.edu/mauritz/dilect.html.
32. Hiramoto, M.; Kubo, M.; Shinmura, Y.; Ishiyama, N.; Kaji, T.; Sakai, K.; Ohno, T.; Izaki, M. Bandgap Science for Organic Solar Cells Electronics [Online], 2014, p. 351-380.
33. Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L. W.; Yan, F., Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature Communications 2016, 7 (1), 11105. DOI:10.1038/ncomms11105.
34. Kim, H.; Lee, Y. H.; Lyu, T.; Yoo, J. H.; Park, T.; Oh, J. H., Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. Journal of Materials Chemistry A 2018, 6 (37), 18173-18182. DOI:10.1039/C8TA05916K.
35. Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T., Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. Angew Chem Int Ed Engl 2015, 54 (26), 7617-7620. DOI:10.1002/anie.201503038.
36. Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P., Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. Journal of the American Chemical Society 2017, 139 (19), 6566-6569. DOI:10.1021/jacs.7b02817.
37. Nunes, R. W.; Gonze, X., Berry-phase treatment of the homogeneous electric field perturbation in insulators. Physical Review B 2001, 63 (15), 155107. DOI:10.1103/PhysRevB.63.155107.
38. Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F., Linear optical properties in the projector-augmented wave methodology. Physical Review B 2006, 73 (4), 045112. DOI:10.1103/PhysRevB.73.045112.
39. Lin, J.-T.; Liao, C.-C.; Hsu, C.-S.; Chen, D.-G.; Chen, H.-M.; Tsai, M.-K.; Chou, P.-T.; Chiu, C.-W., Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21%. Journal of the American Chemical Society 2019, 141 (26), 10324-10330. DOI:10.1021/jacs.9b03148.
40. Lin, J.-T.; Hu, Y.-K.; Hou, C.-H.; Liao, C.-C.; Chuang, W.-T.; Chiu, C.-W.; Tsai, M.-K.; Shyue, J.-J.; Chou, P.-T., Superior Stability and Emission Quantum Yield (23% ± 3%) of Single-Layer 2D Tin Perovskite TEA2SnI4 via Thiocyanate Passivation. Small 2020, 16 (19), 2000903. DOI:https://doi.org/10.1002/smll.202000903.
41. Wang, Z.; Liu, T.; Long, X.; Li, Y.; Bai, F.; Yang, S., Understanding the Diverse Coordination Modes of Thiocyanate Anion on Solid Surfaces. The Journal of Physical Chemistry C 2019, 123 (14), 9282-9291. DOI:10.1021/acs.jpcc.9b01457.
42. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chemical Reviews 2019, 119 (12), 7610-7672. DOI:https://doi.org/10.1021/acs.chemrev.8b00705.
43. Zhao, J.; Xue, S.; Barber, J.; Zhou, Y.; Meng, J.; Ke, X., An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. Journal of Materials Chemistry A 2020, 8 (9), 4700-4734. DOI:https://doi.org/10.1039/C9TA11778D.
44. Christensen, O.; Zhao, S.; Sun, Z.; Bagger, A.; Lauritsen, J. V.; Pedersen, S. U.; Daasbjerg, K.; Rossmeisl, J., Can the CO2 Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. ACS Catalysis 2022, 12 (24), 15737-15749. DOI:https://doi.org/10.1021/acscatal.2c04200.
45. Yoshio, H.; Katsuhei, K.; Shin, S., Production of CO and CH4 in Electrochemical Reduction of CO2 at Metal Electrodes in Aqueous Hydrogencarbonate Solution. Chemistry Letters 1985, 14 (11), 1695-1698. DOI:https://doi.org/10.1246/cl.1985.1695.
46. Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K., Theoretical Insights into a CO dimerization mechanism in CO2 electroreduction. The Journal of Physical Chemistry Letters 2015, 6 (11), 2032-2037. DOI:https://doi.org/10.1021/acs.jpclett.5b00722.
47. Wu, Z.-Z.; Zhang, X.-L.; Niu, Z.-Z.; Gao, F.-Y.; Yang, P.-P.; Chi, L.-P.; Shi, L.; Wei, W.-S.; Liu, R.; Chen, Z.; Hu, S.; Zheng, X.; Gao, M.-R., Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO2 Electroreduction. Journal of the American Chemical Society 2022, 144 (1), 259-269. DOI:https://doi.org/10.1021/jacs.1c09508.
48. Dickinson, H. L. A.; Symes, M. D., Recent progress in CO2 reduction using bimetallic electrodes containing copper. Electrochemistry Communications 2022, 135, 107212, and references therein. DOI:https://doi.org/10.1016/j.elecom.2022.107212.
49. Okatenko, V.; Loiudice, A.; Newton, M. A.; Stoian, D. C.; Blokhina, A.; Chen, A. N.; Rossi, K.; Buonsanti, R., Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO2 Reduction Reaction. Journal of the American Chemical Society 2023, 145 (9), 5370-5383. DOI:https://doi.org/10.1021/jacs.2c13437.
50. Robens, E.; Hecker, B.; Kungl, H.; Tempel, H.; Eichel, R.-A., Bimetallic Copper–Silver Catalysts for the Electrochemical Reduction of CO2 to Ethanol. ACS Applied Energy Materials 2023, 6 (14), 7571-7577. DOI:https://doi.org/10.1021/acsaem.3c00985.
51. Xu, A.; Hung, S.-F.; Cao, A.; Wang, Z.; Karmodak, N.; Huang, J. E.; Yan, Y.; Sedighian Rasouli, A.; Ozden, A.; Wu, F.-Y.; Lin, Z.-Y.; Tsai, H.-J.; Lee, T.-J.; Li, F.; Luo, M.; Wang, Y.; Wang, X.; Abed, J.; Wang, Z.; Nam, D.-H.; Li, Y. C.; Ip, A. H.; Sinton, D.; Dong, C.; Sargent, E. H., Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nature Catalysis 2022, 5 (12), 1081-1088. DOI:https://doi.org/10.1038/s41929-022-00880-6.
52. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K., A Highly Selective Copper–Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO. Angewandte Chemie International Edition 2015, 54 (7), 2146-2150. DOI:https://doi.org/10.1002/anie.201410233.
53. Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K., Cu–Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO. ACS Catalysis 2016, 6 (5), 2842-2851. DOI:https://doi.org/10.1021/acscatal.6b00269.
54. Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A., Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. Journal of the American Chemical Society 2018, 140 (17), 5791-5797. DOI:https://doi.org/10.1021/jacs.8b01868.
55. Zhu, C.; Chen, A.; Mao, J.; Wu, G.; Li, S.; Dong, X.; Li, G.; Jiang, Z.; Song, Y.; Chen, W.; Wei, W., Cu–Pd Bimetallic Gas Diffusion Electrodes for Electrochemical Reduction of CO2 to C2+ Products. Small Structures 2023, 4, 2200328. DOI:https://doi.org/10.1002/sstr.202200328.
56. Takashima, T.; Suzuki, T.; Irie, H., Electrochemical carbon dioxide reduction on copper-modified palladium nanoparticles synthesized by underpotential deposition. Electrochimica Acta 2017, 229, 415-421. DOI:https://doi.org/10.1016/j.electacta.2017.01.171.
57. Zhu, L.; Lin, Y.; Liu, K.; Cortés, E.; Li, H.; Hu, J.; Yamaguchi, A.; Liu, X.; Miyauchi, M.; Fu, J.; Liu, M., Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chinese Journal of Catalysis 2021, 42 (9), 1500-1508. DOI:https://doi.org/10.1016/S1872-2067(20)63754-8.
58. Wang, A.; Li, J.; Zhang, T., Heterogeneous single-atom catalysis. Nature Reviews Chemistry 2018, 2 (6), 65-81. DOI:10.1038/s41570-018-0010-1.
59. Kaiser, S. K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J., Single-Atom Catalysts across the Periodic Table. Chemical Reviews 2020, 120 (21), 11703-11809. DOI:10.1021/acs.chemrev.0c00576.
60. Xue, Z.-H.; Luan, D.; Zhang, H.; Lou, X. W., Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6 (1), 92-133. DOI:https://doi.org/10.1016/j.joule.2021.12.011.
61. Xiong, H.; Peterson, E.; Qi, G.; Datye, A. K., Trapping mobile Pt species by PdO in diesel oxidation catalysts: Smaller is better. Catalysis Today 2016, 272, 80-86. DOI:https://doi.org/10.1016/j.cattod.2016.01.022.
62. Wan, Q.; Wei, F.; Wang, Y.; Wang, F.; Zhou, L.; Lin, S.; Xie, D.; Guo, H., Single atom detachment from Cu clusters, and diffusion and trapping on CeO2(111): implications in Ostwald ripening and atomic redispersion. Nanoscale 2018, 10 (37), 17893-17901. DOI:https://doi.org/10.1039/C8NR06232C.
63. Sattler, K., Cluster Assembled Materials. Trans Tech Publications: 1996.
64. O’Brien, C. P.; Lee, I. C., CO Poisoning and CO Hydrogenation on the Surface of Pd Hydrogen Separation Membranes. The Journal of Physical Chemistry C 2017, 121 (31), 16864-16871. DOI:10.1021/acs.jpcc.7b05046.
65. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558-561. DOI:https://doi.org/10.1103/PhysRevB.47.558.
66. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251-14269. DOI:https://doi.org/10.1103/PhysRevB.49.14251.
67. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15-50. DOI:https://doi.org/10.1016/0927-0256(96)00008-0.
68. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical Review Letters 1996, 77 (18), 3865-3868. DOI:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.3865.
69. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-17979. DOI:https://doi.org/10.1103/PhysRevB.50.17953.
70. Jónsson, H.; Mills, G.; Jacobsen, K. W., Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations, WORLD SCIENTIFIC: 1998; pp 385-404.
71. Filot, I. A. W.; van Santen, R. A.; Hensen, E. J. M., The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie International Edition 2014, 53 (47), 12746-12750. DOI:https://doi.org/10.1002/anie.201406521.
72. Filot, I. A. W.; Broos, R. J. P.; van Rijn, J. P. M.; van Heugten, G. J. H. A.; van Santen, R. A.; Hensen, E. J. M., First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface. ACS Catalysis 2015, 5 (9), 5453-5467. DOI:https://doi.org/10.1021/acscatal.5b01391.
73. Zhang, L.; Filot, I. A. W.; Su, Y.-Q.; Liu, J.-X.; Hensen, E. J. M., Transition metal doping of Pd(111) for the NO + CO reaction. Journal of Catalysis 2018, 363, 154-163. DOI:https://doi.org/10.1016/j.jcat.2018.04.025.
74. Ou, L.; Chen, S., Comparative Study of Oxygen Reduction Reaction Mechanisms on the Pd(111) and Pt(111) Surfaces in Acid Medium by DFT. The Journal of Physical Chemistry C 2013, 117 (3), 1342-1349. DOI:10.1021/jp309094b.
75. Nguyen, T. N.; Salehi, M.; Le, Q. V.; Seifitokaldani, A.; Dinh, C. T., Fundamentals of Electrochemical CO2 Reduction on Single-Metal-Atom Catalysts. ACS Catalysis 2020, 10 (17), 10068-10095. DOI:10.1021/acscatal.0c02643.
76. Liao, C.-C.; Tsai, T.-H.; Chang, C.-C.; Tsai, M.-K., The use of plate-type electric force field for the explicit simulations of electrochemical CO dimerization on Cu(111) surface. Chemical Physics 2023, 568, 111821. DOI:https://doi.org/10.1016/j.chemphys.2023.111821.
77. Yao, K.; Li, J.; Wang, H.; Lu, R.; Yang, X.; Luo, M.; Wang, N.; Wang, Z.; Liu, C.; Jing, T.; Chen, S.; Cortés, E.; Maier, S. A.; Zhang, S.; Li, T.; Yu, Y.; Liu, Y.; Kang, X.; Liang, H., Mechanistic Insights into OC–COH Coupling in CO2 Electroreduction on Fragmented Copper. Journal of the American Chemical Society 2022, 144 (31), 14005-14011. DOI:10.1021/jacs.2c01044.
78. Zhi, X.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z., Key to C2 production: selective C–C coupling for electrochemical CO2 reduction on copper alloy surfaces. Chemical Communications 2021, 57 (75), 9526-9529. DOI:10.1039/D1CC03796J.
79. Zhao, Q.; Martirez, J. M. P.; Carter, E. A., Charting C–C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory. Proceedings of the National Academy of Sciences 2022, 119 (44), e2202931119. DOI:10.1073/pnas.2202931119.
80. Xiao, H.; Cheng, T.; Goddard, W. A., III; Sundararaman, R., Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). Journal of the American Chemical Society 2016, 138 (2), 483-486. DOI:10.1021/jacs.5b11390.
81. Cheng, T.; Xiao, H.; Goddard, W. A., Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proceedings of the National Academy of Sciences 2017, 114 (8), 1795-1800. DOI:10.1073/pnas.1612106114.
82. Zhang, D.; Jansen, C.; Berg, O. T.; Bakker, J. M.; Meyer, J.; Kleyn, A. W.; Juurlink, L. B. F., RAIRS Characterization of CO and O Coadsorption on Cu(111). The Journal of Physical Chemistry C 2022, 126 (31), 13114-13121. DOI:10.1021/acs.jpcc.2c02541.
83. Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J., Electrochemical CO2 Reduction: A Classification Problem. ChemPhysChem 2017, 18 (22), 3266-3273. DOI:https://doi.org/10.1002/cphc.201700736.
84. Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S., Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41-54. DOI:https://doi.org/10.1016/j.nantod.2018.05.001.
85. Giziński, D.; Brudzisz, A.; Santos, J. S.; Trivinho-Strixino, F.; Stępniowski, W. J.; Czujko, T. Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions Catalysts [Online], 2020.
86. Wang, J.; Tan, H.-Y.; Zhu, Y.; Chu, H.; Chen, H. M., Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO2 Reduction. Angewandte Chemie International Edition 2021, 60 (32), 17254-17267. DOI:https://doi.org/10.1002/anie.202017181.
87. Chang, F.; Xiao, M.; Miao, R.; Liu, Y.; Ren, M.; Jia, Z.; Han, D.; Yuan, Y.; Bai, Z.; Yang, L., Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochemical Energy Reviews 2022, 5 (3), 4. DOI:10.1007/s41918-022-00139-5.
88. Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D., Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews 2022, 454, 214340. DOI:https://doi.org/10.1016/j.ccr.2021.214340.
89. Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M., Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angewandte Chemie International Edition 2017, 56 (13), 3621-3624. DOI:https://doi.org/10.1002/anie.201700580.
90. Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López, N.; Cuenya, B. R., Revealing the CO Coverage-Driven C–C Coupling Mechanism for Electrochemical CO2 Reduction on Cu2O Nanocubes via Operando Raman Spectroscopy. ACS Catalysis 2021, 11 (13), 7694-7701. DOI:10.1021/acscatal.1c01478.
91. Sandberg, R. B.; Montoya, J. H.; Chan, K.; Nørskov, J. K., CO-CO coupling on Cu facets: Coverage, strain and field effects. Surface Science 2016, 654, 56-62. DOI:https://doi.org/10.1016/j.susc.2016.08.006.
92. Xiao, H.; Cheng, T.; Goddard, W. A., III, Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111). Journal of the American Chemical Society 2017, 139 (1), 130-136. DOI:10.1021/jacs.6b06846.
93. Ringe, S.; Hörmann, N. G.; Oberhofer, H.; Reuter, K., Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews 2022, 122 (12), 10777-10820. DOI:10.1021/acs.chemrev.1c00675.
94. Zhang, Q.; Asthagiri, A., Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today 2019, 323, 35-43. DOI:https://doi.org/10.1016/j.cattod.2018.07.036.
95. Basdogan, Y.; Maldonado, A. M.; Keith, J. A., Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. WIREs Computational Molecular Science 2020, 10 (2), e1446. DOI:https://doi.org/10.1002/wcms.1446.
96. Van den Bossche, M.; Skúlason, E.; Rose-Petruck, C.; Jónsson, H., Assessment of Constant-Potential Implicit Solvation Calculations of Electrochemical Energy Barriers for H2 Evolution on Pt. The Journal of Physical Chemistry C 2019, 123 (7), 4116-4124. DOI:10.1021/acs.jpcc.8b10046.
97. Lu, S.; Wang, Y.; Xiang, H.; Lei, H.; Xu, B. B.; Xing, L.; Yu, E. H.; Liu, T. X., Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. Journal of Energy Storage 2022, 52, 104764. DOI:https://doi.org/10.1016/j.est.2022.104764.
98. Bagemihl, I.; Bhatraju, C.; van Ommen, J. R.; van Steijn, V., Electrochemical Reduction of CO2 in Tubular Flow Cells under Gas–Liquid Taylor Flow. ACS Sustainable Chemistry & Engineering 2022, 10 (38), 12580-12587. DOI:10.1021/acssuschemeng.2c03038.
99. Luo, W.; Zhang, J.; Li, M.; Züttel, A., Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catalysis 2019, 9 (5), 3783-3791. DOI:10.1021/acscatal.8b05109.
100. García de Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D.-H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; Li, Y. C.; Li, F.; Edwards, J.; Richter, L. J.; Thorpe, S. J.; Sinton, D.; Sargent, E. H., CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 2020, 367 (6478), 661-666. DOI:10.1126/science.aay4217.
101. Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X., Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nature Communications 2021, 12 (1), 136. DOI:10.1038/s41467-020-20397-5.
102. Nesbitt, N. T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W. A., Liquid–Solid Boundaries Dominate Activity of CO2 Reduction on Gas-Diffusion Electrodes. ACS Catalysis 2020, 10 (23), 14093-14106. DOI:10.1021/acscatal.0c03319.
103. Rackers, J. A.; Wang, Z.; Lu, C.; Laury, M. L.; Lagardère, L.; Schnieders, M. J.; Piquemal, J.-P.; Ren, P.; Ponder, J. W., Tinker 8: Software Tools for Molecular Design. Journal of Chemical Theory and Computation 2018, 14 (10), 5273-5289. DOI:10.1021/acs.jctc.8b00529.
104. Li, P.; Huang, J.; Hu, Y.; Chen, S., Establishment of the Potential of Zero Charge of Metals in Aqueous Solutions: Different Faces of Water Revealed by Ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2021, 125 (7), 3972-3979. DOI:10.1021/acs.jpcc.0c11089.
105. Chan, Y.-T.; Huang, I. S.; Tsai, M.-K., Enhancing C–C bond formation by surface strain: a computational investigation for C2 and C3 intermediate formation on strained Cu surfaces. Physical Chemistry Chemical Physics 2019, 21 (41), 22704-22710. DOI:10.1039/C9CP02977J.
106. Chan, K.; Nørskov, J. K., Electrochemical Barriers Made Simple. The Journal of Physical Chemistry Letters 2015, 6 (14), 2663-2668. DOI:10.1021/acs.jpclett.5b01043.
107. Wang, Y.; Xu, L.; Hsu, H.-Y.; Leung, T.-C.; Lin, M.-C., First-principles study of clean tungsten surface work function under electric field. Journal of Vacuum Science & Technology B 2020, 38 (2), 022209. DOI:10.1116/1.5140750.
108. Jinnouchi, R.; Anderson, A. B., Aqueous and Surface Redox Potentials from Self-Consistently Determined Gibbs Energies. The Journal of Physical Chemistry C 2008, 112 (24), 8747-8750. DOI:10.1021/jp802627s.