簡易檢索 / 詳目顯示

研究生: 施彥豪
Shih, Yen Hao
論文名稱: 不同摻雜濃度之碲化鎘鋅、碲化鎘硒及砷化鋁鎵/砷化鎵的遠紅外線光譜研究
Far Infrared Spectroscopy Studies of Composition Dependent Cd1-xZnxTe, CdSexTe1-x and AlxGa1-xAs/GaAs
指導教授: 楊遵榮
Yang, Tzuen-Rong
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 89
中文關鍵詞: 遠紅外線光譜砷化鋁鎵碲化鎘鋅碲化鎘硒光學聲子傳導性質
英文關鍵詞: Far Infrared Spectroscopy, AlGaAs, CdZnTe, CdSeTe, Optic phonon, Electrical Properties
論文種類: 學術論文
相關次數: 點閱:169下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用傅立葉式紅外光譜儀(FTIR) Bruker IFS 66 v/S,搭配低溫系統進行一系列的室溫(300 K)和低溫(80 K)的遠紅外線反射光譜測量。我們並利用介電方程式分析由實驗得到的遠紅外線反射光譜,藉由光譜的模擬,計算出光學聲子及載子特性。不同濃度摻雜的碲化鎘鋅、碲化鎘硒及成長在磷化銦上的砷化鋁鎵是本研究的實驗樣品。
    在碲化鎘鋅的遠紅外線光譜研究中我們發現,當鋅的摻雜濃度趨近於零或一的時候(也就是碲化鎘和碲化鋅),在聲子模的頂端會出現一個較小的波峰,而這個波峰很快的隨著摻雜濃度的增加而衰退掉。這個新生的波峰,是由於陽離子和陰離子之間的簇生而產生。我們也發現碲化鎘鋅的兩個縱向聲子模的頻率都隨著鋅摻雜的濃度而增加。在碲化鎘硒的遠紅外線光譜研究中我們發現,當硒摻雜的濃度很小時,碲化鎘的聲子模頂端也有簇生效應產生,而且隨著溫度降低而更加明顯。但當硒摻雜的濃度增加時,這個聲子模很快就衰退不見。此外,我們還發現隨著硒摻雜的濃度增加,在兩個聲子模之間又產生了一個聲子模,我們認為這個聲子模是由碲化硒的纖維鋅礦結構所產生,並藉由光譜間的比對、晶體結構和文獻得到初步的判斷。在成長在磷化銦上的砷化鋁鎵的遠紅外線光譜研究中我們發現砷化鋁的聲子頻率隨鋁的摻雜濃度增加而增加,而砷化鎵的聲子頻率卻隨著鋁的摻雜濃度增加而減少。此外我們還發現因為二次反射造成砷化鎵聲子強度的變化。
    這個研究界定了碲化鎘鋅、碲化鎘硒及成長在磷化銦上的砷化鋁鎵的高頻介電係數、橫向及縱向光學聲子的強度、頻率和衰退係數、自由載子濃度、移動率和有效質量以及薄膜厚度,也計算出導電率和原子間的力常數,而這些參數隨著摻雜濃度變化的趨勢也被了解。此外碲化鎘硒的特殊結構變化,也在實驗中清楚的被觀察到並加以討論。研究結果對於這些半導體的資訊建立有很好的貢獻,也可做為這些材料在應用上的參考依據。

    Fourier transform infrared spectroscopy (FTIR) Bruker IFS 66 V/S and low temperature system were employed for a series of measurements. The samples were measured at room temperature (300 K) and some of them were measured at low temperature (80 K). A dielectric response model was used to determine the optical and transport properties of the samples. Different compositions of Cd1-xZnxTe bulks, CdSexTe1-x bulks and AlxGa1-xAs thin film grown on GaAs were used in this study.
    From far infrared spectrum of Cd1-xZnxTe, we found a small peak appears on the top of the phonon mode when x~0 and x~1 (In other words, the pure CdTe and ZnTe materials). This small peak disappears quickly with the variation of Zn composition. The small peak was caused by the clustering between anions and cations from previous studies. The CdTe-like and ZnTe-like TO frequencies increase with the increase of Zn composition x. From far infrared spectrum of CdSexTe1-x, when x~0, there is a clustering effect similar as Cd1-xZnxTe and the peak becomes stronger with decreasing temperature. However, the peak disappears soon with increasing Se composition. Besides, a third mode appeared between the CdTe-like phonon mode and CdSe-like phonon mode and becomes stronger with an increase of Se composition. We thought the third mode behavior was caused by the wurtzite structure of CdSe. This opinion has a good agreement with previous studies. From far infrared spectrum of AlxGa1-xAs/GaAs, the AlAs-like phonon frequency increases with increasing x and GaAs-like phonon mode decreases with increasing x. Besides, we found a variation of the GaAs-like mode strength cause by the second reflection.
    This study characterized the high-frequency dielectric constant, transverse optical phonon mode frequency, strength, damping constant, free carrier concentration, mobility and effective mass of Cd1-xZnxTe, CdSexTe1-x and AlxGa1-xAs/GaAs. Conductivity and force constant between the atoms were also calculated. The variations of these parameters with composition have been characterized. Besides, the special structure change of CdSexTe1-x is observed clearly in the spectrum and has discussed. The study established a data base of these materials and provides a fundamental property for their application reference.

    致謝......i 摘要......ii ABSTRACT......iii LIST OF TABLES......v LIST OF FIGURES......vi 1. INTRODUCTION......1 2. THEORY OF FAR INFRARED SPECTROSCOPY......6 2.1 Electromagnetic Wave in Medium......6 2.2 Kramers-Kronig Relations......10 2.3 Phonons and Free Carriers in Semiconductor.......13 2.4 Dielectric Response Model......16 2.5 Far Infrared Spectrum Analysis......18 2.6 The Model of Force Constant......20 3. INSTRUMENT AND MEASUREMENT PROCEDURE......24 3.1 Fourier Transform Infrared (FTIR) Spectrometer - Bruker IFS 66 v/S......24 3.2 Principle of FTIR......29 3.3 Sample Preparation and Experiment Procedure......33 4. EXPERIMENT RESULTS ANALYSES AND DISCUSSIONS......35 4.1 Far Infrared Spectrum Analysis of Cd1-x ZnxTe......36 4.2 Far Infrared Spectrum Analysis of CdSexTe1-x......50 4.3 Far Infrared Spectrum Analysis of AlxGa1-x As/GaAs......68 5. CONCLUSION......82 REFERENCE......85

    [1] J. Polit, E. Sheregii, J. Cebulski, A. Kisiel, M. Piccinini, A. Marcelli, B. Robouch, M. Cestelli Guidi, A. Nucara and A. Mycielski, Infrared Physics & Technology 49 (2006) 23.
    [2] N. Romcevic, M. Romcevic, A. Milutinovic and S. Kostic, Journal of Alloys and Compounds 478 (2009) 41.
    [3] D. J. Lockwood, G. Yu, N. L. Rowell, and P. J. Poole, J. Appl. Phys. 101 (2007)ˇ113524.
    [4] Z. G. Hu, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, G. Von Winckel, A. Stintz, and S. Krishna, J. Appl. Phys. 97 (2005)ˇ093529.
    [5] J. Trajic, N. Romcevic, M. Romcevic and V.N. Nikiforov, Materials Research Bulletin 42 (2007) 2192.
    [6] S. Kamba, M. Berta, M. Kempa, J. Hlinka, J. Petzelt, K. Brinkman and N. Setter, J. Appl. Phys. 98 (2005) 074103.
    [7] Xiong Zhanga, Yong-Tian Hou, Zhe-Chuan Feng and Jin-Li Chen, J. Appl. Phys. 89 (2001) 6165.
    [8] S. S. Ng, T. L. Yoon, Z. Hassan, and H. Abu Hassan, J. Appl. Phys. 94 (2009) 241912.
    [9] P. Wisniewski, W. Knap, J. P. Malzac, J. Camassel, M. D. Bremser, R. F. Davis and T. Suski, Appl. phys. lett. 73 (1998) 1760.
    [10] Z. G. Hu, M. Strassburg, N. Dietz, A. G. U. Perera, A. Asghar, and I. T. Ferguson, Phys. Rev. B 72 (2005) 245326.
    [11] K. Zanio, Semiconductors and semimetals, in: R.K. Willardson, A.C. Beer (Eds.), Cadmium Telluride, vol. 13, Academic Press, New York,1978.
    [12] H.Y. Shin, C.Y. Sun, Mater. Sci. Eng. B 41 (1996) 345.
    [13] J. Franc, P. Hoschl, E. Belas, R. Grill, P. Hlidek, P. Moravec and J. Bok, Nucl. Instr. and Meth. A 434 (1999) 146.
    [14] T. Whitaker, Compd. Semicond. 5 (1999) 39.
    [15] J.J. Prias-Barragan, L. Tirado-Mejia, H. Ariza-Calderon, L. Banos, J.J. Perez-Bueno and M.E. Rodriguez, J. Crystal Growth 286 (2006) 279.
    [16] T.E. Schlesingera, J.E. Toneyb, H. Yoonc, E.Y. Leed, B.A.Brunettd, L. Franksd and R.B. Jamesd, Materials Science and Engineering 32 (2001) 103.
    86
    [17] M. Martyniuk and P. Mascher, Physica B 308 (2001) 924.
    [18] K. Yasuda, M. Niraula, H. Kusama, Y. Yamamoto, A. Tominaga, K. Takagi, Y. Aagata, Appl. Surf. Sci. 244 (2005) 347.
    [19] N.C. Giles-Taylor, R.N. Bicknell, D.K. Blanks, T.H. Myers and J.F. Schetzina, J. Vac. Sci. Technol. A3 (1985) 76.
    [20] P.Y. Tseng, C.B. Fu, M.C. Kuo, C.S. Yang, C.C. Huang, W.C. Chou, Y.T. Shih, H.Y. Hsin, S.M. Lan and W.H. Lan, Mater. Chem. Phys. 78 (2003) 529.
    [21] S.L. Bell and S. Sen, J. Vac. Sci. Technol. A3 (1985) 112.
    [22] M. Azoulay, S. Rotter, G. Gafni and M. Roth, J. Crystal Growth 116 (1992) 515.
    [23] R. Weil, M. Joucla, J. L. Loison, M. Mazilu, D. Ohlmann, M. Robino and G. Schwalbach, Appl. Opt. 37 (1998)2681.
    [24]A. Aydinli, A. Compaan and G. Coutreas-Puente, Solid State Commun. 80 (1991) 465.
    [25] B. M. Basol, V. K. Kapur and M. L. Ferris, J. Appl. Phys. 66 (1989)1816.
    [26] J. Gonzalez-Hernandez, O. Zalaya and J. G. Mendoza-Alverez, J. Vac. Sci. Technol. A9 (1991) 550.
    [27] R. N. Bhattacharya, J. Appl. Electrochem. 16 (1986) 168.
    [28] T. H. Weng, J. Electrochem. Soc. 117 (1970) 725.
    [29] M. I. Izakson, N.Ya. Karasik, L. M. Prokator, D.A. Sakseev, G.A. Fedorova and I. N. Yakimenko, Inorg. Mater. 15 (1979) 178.
    [30] P. J. Sebastian and V. Sivaramakrishnan, J. Phys. D. 23 (1990) 1114.
    [31] Y. Eisen, A. Shor, J. Cryst. Growth 184 (1998) 1302.
    [32] A.A. Melnikov, J. Cryst. Growth 19 (1999) 6637.
    [33] Z. Loizos, N. Spyrellis, G. Maurin and D. Pottier, J. Electroanal. Chem. 269 (1989) 399..
    [34] N. Muthukumarasamy, R. Balasundaraprabhu, S. Jayakumar and M.D. Kannan, Mater. Chem. Phys. 102 (2007) 86..
    [35] N. Muthukumarasamy, S. Jayakumar, M.D. Kannan and R. Balasundaraprabhu, Solar Energy 83 (2009) 522.
    [36] R. Islam, H.D. Banerjee and D.R. Rao, Thin Solid Films 266 (1995) 215.
    [37]A. K. Saxena, Phys. Status Solidi B 96 (1979) K77.
    [38]A. K. Saxena, Appl. Phys. Lett. 36 (1979) 79.
    [39]A. K. Saxena, J. Phys. C 13 (1980) 4323.
    87
    [40] P. M. Solomon and H. Morkoc, IEEE Trans. Electron Devices ED-31 (1984) 1015.
    [41] M. E. Kim, A. K. Oki, G. M. Gorman, D. K. Vmemoto, and J. B. Camoa, IEEE Trans. Microwave Theory Tech. MTT-37 (1989) 1286.
    [42] S. Adachi, J. Appl. Phys. 58 (1985) R1.
    [43] K. Zanio, Willardson, Beer, Teatise (Eds.), Cadmium Telluride, Semiconductors and Semimetals, Vol. 13, Academic Press, San Diego, 1978, p. 53.
    [44] S. Uthanna and P. J. Reddy, Solid State Commun. 45 (1983) 979.
    [45] J. P. Mangalhara, R. Thangaraj and O.P. Agnihotri, Solar Energy Mater. 19
    (1989) 157.
    [46] R. Islam, H. D. Banerjee and D. R. Rao, Thin Solid Films 226 (1995) 215.
    [47] L. Baufay, D. Dispa, A. Pigeolet and L. D. Laude, J. Crystal Growth 59 (1982)
    143.
    [48] J. Steininger and A. J. Strauss, J. Crystal Growth 13 (1972) 657.
    [49] A. P. Belyaev and I. P. Kalinkin, Thin Solid Films 158 (1988) 25.
    [50] P. J. Sebastain and V. Sivaramakrishnan, J. Crystal Growth 112 (1991) 421.
    [51] Charles Kittel, Introduction to Solid State Physics (Edition eight) (2005).
    [52] 錢玉坤,國立台灣師範大學物理研究所碩士論文(1998).
    [53] L. Genzel, T. P. Martin, and C. H. Perry, Physica Status Solidi B 62 (1974) 83.
    [54] Y. Fukal, J. Phys. Soc. Japan 18 (1963) 1413.
    [55] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford 1954.
    [56] J. H. Fertel and C. H. Perry, Phys. Rev. 184 (1969) 874.
    [57] M. L. Forman, Journal De Physique C2 (1967) 58.
    [58] P. L. Richards, J. Optical. Soc. Amer. 54 (1964) 1474.
    [59] H. W. Verleur and A. S. Barker, Phys. Rev. 149 (1966) 715.
    [60] B V Robouch, P Zajdel, A Kisiel, A Marcelli, E M Sheregii, M Cestelli Guidi, M Piccinini, J Polit, J Cebulski, E Burattini and A Mycielski, J. Phys.: Condens. Matter 20 (2008) 325217.
    [61] J. Polit, E. M. Sheregii, J. Cebulski, B. V. Robouch, A. Marcelli, M. Cestelli Guidi, M. Piccinini, A. Kisiel, P. Zajdel, E. Burattini and A. Mycielski, J. Appl. Phys. 100 (2006) 013521.
    [62] V. Dzhagan, M. Ya. Valakh, J. Kolny-Olesiak, I. Lokteva and D. R. T. Zahn, Appl.
    88
    Phys. Lett. 94 (2009) 243101.
    [63] J. Camacho, A. Cantarero, I. Hernandez-Calderon and L. Gonzalez, J. Appl. Phys. 92 (2002) 6014.
    [64] J. Camacho, I. Loa, A. Cantarero and K. Syassen, J. Phys.: Condens. Matter 14 (2002) 739.
    [65] S.Perkowitz, L. S. Kim, Z. C. Feng and P. Becla, Phys. Rev. B 42 (1990) 1455.
    [66] D. N. Talwar, Z. C. Feng and P. Becla, Phys. Rev. B 48 (1993) 17064.
    [67] Lev I. Deych, Alexey Yamilov and Alexander A. Lisyansky, Phys. Rev. B 62 (2000) 6301.
    [68] J.E. Toney, T.E. Schlesinger, R.B. James, Nucl. Instrum. Method. Phys. Res. A 428 (1999) 14.
    [69] G.A. Gamal, M. Abou Zied and A.A. Ebnalwaled, Journal of Alloys and Compounds 431 (2007) 32.
    [70] Wu-Yih Uen, Shiun-Yi Chou, Hwa-Yuh Shin, Sen-Mao Liao and Shan-Ming Lan, Materials Science and Engineering B106 (2004) 27.
    [71] S. Bhunia and D.N. Bose, Journal of Crystal Growth 186 (1998) 535.
    [72] S. Sitharaman, R. Raman, L. Durai, Surendra Pal, Madhukar Gautam, Anjana Nagpal, Shiv Kumar, S.N. Chatterjee and S.C. Gupta, Journal of Crystal Growth 285 (2005) 318.
    [73] D Bhattacharyya, S Chaudhuri and A K Pal, Vacuum 46 (1995) 1.
    [74] T. R. Yang, C. C. Lu, W. C. Chou, Z. C. Feng and S. J. Chua, Phys. Rev. B 60 (1999) 16058.
    [75] S. Perkowitz, L. S. Kim and P. Becla, Phys. Rev. B 43 (1991) 6598.
    [76] Z.C. Feng, P. Becla, L.S. Kim, S. Perkowitz, Y. P. Feng, H.C. Poon, K. P. Williams and G. D. Pitt, J. Crystal Growth 138 (1994) 239.
    [77] Alka Ingale and K. C. Rustagi, Phys. rev. B 58 (1998) 7197.
    [78] L. Hannachi and N. Bouarissa, Superlattices and Microstructures 44 (2008) 794.
    [79] N. Muthukumarasamy, R. Balasundaraprabhu, S. Jayakumar and M.D. Kannan, Solar Energy Materials & Solar Cells 92 (2008) 851.
    [80] N. Muthukumarasamy, S. Velumani, R. Balasundaraprabhu, S. Jayakumar and M.D. Kannan, Vacuum 84 (2010) 1216.
    [81] D. Bhattacharyya, S. Chaudhuri and A. K. Pal, Vacuum 46 (1995) 1.
    [82] Ruisheng Zhenga and Tsunemasa Taguchi, J. Appl. Phys. 93 (2003) 9048.
    89
    [83] Z. C. Feng, Perkowitz, D. K. Kinell, R. L. Whitney and D. N. Talwar, Phys. Rev. B 47 (1993) 13466.
    [84] D.J. Lockwood, Guolin Yu and N.L. Rowell, Solid State Communications 136 (2005) 404.
    [85] P. Basmaji, A. Zaouk and P. Gibart, Appy. Phys. Lett. 54 (1989) 1121.
    [86] D. C. Look, D. K. Lorance, J. R. Sizelove, C. E. Stutz, K. R. Evans and D. W. Whitson, J. Appl. Phys. 71 (1992) 260.
    [87] J. S. Jie, W. J. Zhang, Y. Jiang, and S. T. Lee, Appl. Phys. Lett. 89 (2006) 133118.

    下載圖示
    QR CODE