簡易檢索 / 詳目顯示

研究生: 張峻賢
Chun-Hsin Chang
論文名稱: L10-FePt奈米線陣列之垂直磁性自旋閥
Perpendicular magnetic L10-FePt -based nanowires arrays spin valves
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 奈米線陽極氧化鋁自旋閥
英文關鍵詞: nanowires, anodized aluminum oxide, spin valve
論文種類: 學術論文
相關次數: 點閱:165下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用孔洞為50 nm之陽極氧化鋁(AAO)作為模板,再以電化學沉積之方式合成出FePt奈米線陣列。藉由X光繞射儀(XRD)觀察FePt奈米線陣列於700oC與5% H2/N2之環境下進行熱退火時FePt奈米線陣列將從無序相之面心立方晶格fcc轉換為有序L10相,FePt奈米線陣列於有序相L10相其矯頑磁場約為7.5 kOe,利用熱退火之方式,使L10相FePt奈米線陣列至(001)方向之磁化易軸。而L10相FePt奈米線陣列之矯頑磁場遠大於Ni3Fe,故FePt/Cu/Ni3Fe奈米線陣列中之FePt固定層與Ni3Fe自由層之磁性差異性,即形成具功能性之開關元件。藉由此性質合成FePt/Cu/Ni3Fe與FePt/NiO/Ni3Fe多層結構之奈米線,即可觀察巨磁阻(GMR)之現象與垂直式磁性自旋閥效應,而多層L10-FePt奈米線陣列其特性可被應用於一維磁性奈米材料。

    FePt nanowires arrays were successfully prepared by electrodeposition into porous anodized aluminum oxide (AAO) templates with pore diameters of approximately 50 nm from a very simple electrolyte. The phase transition of FePt nanowire was from a disorder alloy distribution of fcc to ordered L10 phase after annealing at 700oC in 5% H2/N2, and it was observed by x-ray diffraction approach. FePt nanowires with L10 phase exhibit a large coercivity of 7.5 kOe. Thermal treatment was applied to obtain L10-FePt nanowires with (001) preferential orientation. The coercivity of L10- FePt nanowires is greater than that of Ni3Fe, therefore FePt/Cu/Ni3Fe nanowires exhibited a well-separated switching of the FePt fixed layer and the Ni3Fe free layer. This characteristic can be used to fabricate multi-segment of FePt/Cu/Ni3Fe and FePt/NiO/Ni3Fe nanowires which also can observed the giant magnetoresistance (GMR) and perpendicular magnetic spin valve effect. multi-segment of L10-FePt nanowires prepared by the present process have great potential for one dimension nanomagnetism application.

    目錄.......................................................I 圖目錄.....................................................V 表目錄....................................................XI 第一章 緒論...............................................1 1.1 奈米材料簡介…………………………………………………………………1 1.1.1 何謂奈米材料………………………………………………2 1.1.2 奈米材料特性………………………………………………2 1-1-2-1 催化性質……………………………………………3 1-1-2-2 光學性質…………………………………3 1-1-2-3 磁性………………………………………4 1-1-2-4 複合材料…………………………………4 1-1-2-5 感測………………………………………4 1-1-2-6 電子傳遞…………………………………5 1.2 多孔性氧化鋁模……………………………………………………5 1.2.1 多孔性氧化鋁模之簡介……………………………………6 1-2-1-1 電解液之影響……………………………7 1-2-1-2 操作電壓之影響…………………………9 1-2-1-3 操作溫度…………………………………9 1.2.2 多孔性氧化鋁模之成長機制………………………………9 1-2-2-1 局部電場集中…………………………………………………10 1-2-2-2 孔洞形成………………………………………………………11 1-3 磁性材料……………………………………………………………12 1-3-1 磁性材料分類與其特性……………………………………12 1-3-1-1 順磁性(paramagnetic)物質………………………13 1-3-1-2 反磁性(diamagnetic)物質………………………15 1-3-1-3 鐵磁性(ferromagnetic)物質……………………16 1-3-1-4 反鐵磁性(anti-ferromagnetic)物質……………18 1-3-1-5 陶鐵磁性(ferrimagnetic)物質…………………18 1-3-2 磁性理論基礎………………………………………………19 1-3-2-1 磁滯現象…………………………………………19 1-3-2-2 磁異向性…………………………………………21 1-3-2-3 鐵磁共振…………………………………………23 1-3-3 L10-FePt合金之優點…………………………………………26 1-3-4 合金化學序化……………………………………………………32 1-3-4-1 FePt合金理論……………………………………32 1-3-4-2 合金化學序化(chemical order) …………………………34 1-4 磁阻簡介……………………………………………………………36 1-4-1 常磁阻(Ordinary Magnetoresistance) ……………………36 1-4-2 異向磁阻(Anisotropic Magnetoresistance) ………………37 1-4-3 巨磁阻(Giant Magnetoresistance) …………………………37 1-4-4 龐磁阻(Colossal Magnetoresistance) ……………………38 1-4-5 穿隧磁阻(Tunneling Magnetoresistance) …………………38 1-5 文獻回顧……………………………………………………………39 1-5-1 FePt合金薄膜(FePt alloy thin film)………………………39 1-5-2 多層膜退火(Multilayer deposition plus anealing)……40 第二章 實驗步驟與儀器分析原理............................42 2-1 化學藥品……………………………………………………………42 2-2 多孔性氧化鋁模製備………………………………………………44 2-2-1 前處理…………………………………………………………44 2-2-2 陽極處理………………………………………………………44 2-2-3 脫膜……………………………………………………………44 2-2-4 障壁層蝕刻……………………………………………………45 2-3 L10-FePt磁性奈米線之製備………………………………………46 2-3-1 背電極蒸鍍…………………………………………………46 2-3-2 L10-FePt奈米線沉積………………………………………46 2-3-2-1 熱退火………………………………………………46 2-3-2-2 取出磁性奈米線……………………………………47 2-3-3 L10-FePt/Cu/Ni3Fe奈米線沉積………………………………47 2-3-4 L10-FePt/NiO/Ni3Fe奈米線沉積………………………………48 2-4 樣品之鑑定與分析…………………………………………………50 2-4-1 循環伏安儀…………………………………………………50 Cyclic voltmmetry (CV) 2-4-2 X光粉末繞射儀……………………………………………52 X-ray diffraction (XRD) 2-4-3 電子顯微鏡 (Eleetron microscopy)……………………55 2-4-3-1 掃描式電子顯微鏡…………………………………56 Scanning electron microscopy (SEM) 2-4-3-2 穿透式電子顯微鏡…………………………………58 Transmission electron microscopy (TEM) 2-4-4 能量散布X光光譜儀 (EDX)……………………………………60 Energy dispersive X-ray spectrometer (EDX) 第三章 結果與討論……………………………………………………62 3-1 陽極氧化鋁模板……………………………………………………62 3-1-1 表面型態與孔徑分析……………………………………………62 3-1-2 擴孔與膜厚分析…………………………………………………64 3-2 鐵鉑磁性奈米線之製備……………………………………………66 3-2-1 電鍍液循環伏安法分析…………………………………………67 3-2-2 掃描式電子顯微鏡與能量散佈X 光光譜儀分析………………71 3-2-3 X光粉末繞射儀分析……………………………………………72 3-2-4 Ni3Fe奈米線之鐵磁共振分析…………………………………75 3-2-5 震動樣品磁度儀分析……………………………………………78 3-2-6 鐵鉑奈米線退火之反應機制……………………………………81 3-2-7 奈米線磁阻量測…………………………………………………83 3-2-7-1 L10-FePt/Cu/Ni3Fe奈米線之磁阻…………………………84 3-2-7-2 L10-FePt/NiO/Ni3Fe奈米線之磁阻……………………… 85 第四章 結論………………………………………………91 參考文獻.......................................93

    1. 林正良, 化工資訊 11, 民83。
    2. 呂宗昕, 圖解奈米科技與光觸媒々商周出版社, 民92。
    3. A. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, J Appl.
    Phys. 84, 6023 (1998).
    4. S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee and K. H. Lee,
    Nanotechnology 16, 850 (2005).
    5. H. Masuda. H. Yamada, M. Satoh, H. Asoh, M. Nakao and
    T. Tamaura, Appl. Phys. Lett. 71, 2770 (1997).
    6. G. E. Thompson, Thin Solid Films 297, 192 (1997).
    7. O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett. 72, 1173
    (1998).
    8.磁性物理學,齊卡茲尼著,張煦、李學養譯
    9. 金重勳, 磁性技術手冊々磁性技術協會〆竹東, 民91。
    10. 張慶端, 物理會刊 11, 民78。
    11. http://e-info.org.tw/node/4321
    12. 楊志信, 台灣資訊儲存技術協會會訊 28, 民90。
    13. J. U. Thiele, J. Appl. Phys. 84, No.10, p.5686, 1998
    14. M. R. Visokay, J. Magn. Magn. Mat. 126, p.136, 1993
    15. Y. Liu, Nanostructured Mat. 12, p.1027, 1999
    16. E. Gommert, J. Appl. Phys, 85, 5417(1999)
    17. T. K. Nath, R. A. Rao, D. Lavric, and C. B. Eom,Appl. Phys. Lett. 74, 1615(1999)
    18. C. J. Lu, and Z. L. Wang, J. Appl. Phys, 88, 4032(2000)
    19. M. Mc/cirnacj et.al. Appl. Phys. Lett. 64, 3054(1994)
    20. G.C. Xiong et.al. Appl. Phys. Lett. 66, 1427(1995)
    21. Z. W. Dong et.al. IEEE Tran. Appl. Superconduc. 7,2173(1997)
    22. M. F. Hundley et.al. Appl. Phys. Lett. 67,860(1995)
    23. G. Jeffrey Snyder et.al. Phys. Rev. B53, 53(1996)
    24. H.T. Hardner et.al. J. Appl. Phys. 81, 272(1997)
    25. A. P. Ramirez, J. Phys. Condens. Matter 9, 8171(1997)
    26. M. Julliere. Phys. Lett. 54A, 225(1975)
    27. K. Watanabe, IEEE Trans. Magn. MAG-23, No.5, p.3196, 1987.
    28. K. Watanabe, Vrans. JIM. 26, p.362 1985
    29. K. Watanabe, Mater. Trans. JIM. 32, No.3, p.292, 1991
    30. J. Wang, Analytical Electrochemistry; John Wiley & Sons: New York, 2000.
    31. http://cai.wit.edu.cn/mse/liuyu2006ppt/liuX_ray.ppt
    32. A. R. West, Basic Solid State Chemistry; John Wiley & Sons: Singapore, 1991.
    33. 杜正恭,儀器總覽々行政院國家科學委員會精密儀器發展中心〆台北, 民87。
    34. 陳力俊等著, 材料電子顯微鏡學々高立圖書有限公司〆新竹, 民89。
    35. 汪建民, 材料分析々中國材料科學學會〆新竹, 民87。
    36. 伍秀菁、汪若文與林美吟, 儀器總覽々國科會精儀中心〆新竹,民87。
    37. http://www.matter.org.uk/glossary/
    38. 黃永盛, 科儀新知, 17 期, 民84。
    39. D. C. Harrid, Quantitative Chemical Analysis; Freeman: New York, 2000.
    40. A. R. West, Solid State Chemistry and Its Application; John Wiley & Son: New York, 1995.
    41. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273(1995)
    42. Patric W. Anderson, Phys. Rev. 100, 675(1995)
    43. A. J. Millis el.al. Phys. Rev. Lett. 74, 5144(1995)

    下載圖示
    QR CODE