簡易檢索 / 詳目顯示

研究生: 陳厚諭
Hou-Yu Chen
論文名稱: 咖啡因增補對不同體能水準之延遲性肌肉酸痛的影響
Effects of fitness level and caffeine ingestion on delayed onset muscle soreness
指導教授: 王鶴森
Wang, Ho-Seng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 60
中文關鍵詞: 咖啡因延遲性肌肉酸痛體能水準
英文關鍵詞: caffeine, DOMS, fitness level
論文種類: 學術論文
相關次數: 點閱:496下載:68
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    目的:探討咖啡因增補對不同體能水準者於離心運動後所引起的延遲性肌肉酸痛 (delayed onset muscle soreness, DOMS) 之生理及生化反應的影響。方法:依最大耗氧量分成10名高體能組 (HF;VO2max=54.5 ± 3.75 毫升/公斤/分) 及10名低體能組 (LF;VO2max=44.7 ± 3.06 毫升/公斤/分)之大學男生,先於跑步機上以70%VO2max的強度進行一次30分鐘的下坡跑 (–15% 斜度) 誘發股四頭肌產生DOMS,所有受試者於誘發DOMS後依雙盲設計及組內平衡次序法於第一天及第二天分別增補咖啡因或安慰劑膠囊10 mg ・ kg–1,並在增補前、後測量最大自主等長肌力、酸痛指數、肌酸激酶、乳酸脫氫酶及組織胺。實驗所得資料採混合設計二因子變異數分析進行統計處理。結果:在增補因子方面,HF組與LF組在增補咖啡因後所提升的最大自主等長肌力百分比 (HF:7.0 ± 9.9 %, LF:5.1 ± 10.8 %),皆顯著高於增補安慰劑 (HF:-0.1 ± 4.7 %, LF:0.4 ±5.2 %; p<.05);咖啡因增補後降低的酸痛指數百分比 (HF:-18.2 ± 22.2 %, LF:-11.9 ± 11.3 %),亦顯著低於增補安慰劑 (HF:7.2 ± 18.5 %, LF:1.7 ± 11.5 %; p<.05);兩組在肌酸激酶、乳酸脫氫酶及組織胺於增補咖啡因或安慰劑後改變之活性值,皆未達到顯著差異。結論:1.誘發 DOMS後增補10 mg ・ kg–1之咖啡因能顯著降低運動中肌肉酸痛及顯著提升最大自主等長肌力,此種效果不會因為體能水準不同而改變。2.咖啡因的增補雖能顯著降低肌肉酸痛之不適感,但並非因為降低了發炎與損傷的程度。

    關鍵詞:咖啡因、延遲性肌肉酸痛、體能水準

    Abstract
    Purpose: The purpose of this study was to examine the effects of caffeine ingestion on delayed onset muscle soreness (DOMS) in men of different fitness levels. Methods: Ten high fitness level (HF; VO2max=54.5 ± 3.75 ml/kg/min) and ten low fitness level (LF; VO2max=44.7 ± 3.06 ml/kg/min) college males performed a 30 minutes downhill running (-15% ) to elicit DOMS. All subjects ingested caffeine 24 or 48 hors after exercise induced DOMS under double-blind controlled. We measured maximal voluntary isometric contractions (MVIC), perceived muscle soreness scale, creatine kinase (CK), lactate dehydrogenase (LDH) and histamine activity one hour before and after caffeine ingestion. Data were analyzed by a mixed design two-way ANOVA. Results: After caffeine ingestion, HF and LF of participants were significantly increased in MVIC force % (HF:7.0 ± 9.9 %, LF:5.1 ± 10.8 %) than placebo ingestion (HF:-0.1 ± 4.7 %, LF:0.4 ±5.2 %; p<.05), in addition, the muscle soreness scale % (HF:-18.2 ± 22.2 %, LF:-11.9 ± 11.3 %) was significantly reduced than placebo ingestion (HF:7.2 ± 18.5 %, LF:1.7 ± 11.5 %; p<.05). However, there was no significant difference between two fitness levels in CK, LDH and histamine activity. Conclusions: 10 mg ・ kg-1 body weight dose of caffeine could increase the MVIC and reduce pain after exercise induced DOMS, and these effects independent of fitness level.

    Key words: caffeine, DOMS, fitness level

    【目次】 中文摘要………………………………………………………………i 英文摘要………………………………………………………………ii 謝 誌………………………………………………………………iii 目 次………………………………………………………………iv 表 次………………………………………………………………vii 圖 次………………………………………………………………viii 第壹章、緒論…………………………………………………………01 一、問題背景…………………………………………………………01 二、研究目的…………………………………………………………03 三、研究假設…………………………………………………………03 四、名詞操作性定義…………………………………………………03 第貳章、文獻探討……………………………………………………05 一、DOMS簡介………………………………………………………05 二、咖啡因簡介………………………………………………………07 三、咖啡因對痛覺調節的機制………………………………………09 四、咖啡因攝取對運動期間肌肉酸痛的影響………………………10 五、本章總結…………………………………………………………12 第參章、方法與步驟……………………………………………… 14 一、受試者……………………………………………………………14 二、實驗時間…………………………………………………………15 三、實驗地點…………………………………………………………15 四、實驗方法與步驟…………………………………………………15 五、資料處理…………………………………………………………22 第肆章、結果…………………………………………………………23 一、受試者基本資料…………………………………………………23 二、最大自主等長肌力………………………………………………23 三、肌肉酸痛指數……………………………………………………26 四、血清CK活性值……………………………………………………27 五、血清LDH活性值…………………………………………………29 六、血漿Histamine活性值…………………………………………31 七、其他生化指標……………………………………………………32 第伍章、討論………………………………………………………34 一、最大自主等長肌力………………………………………………34 二、肌肉酸痛指數……………………………………………………35 三、血清CK、LDH及其他生化指標活性……………………………37 四、血漿Histamine活性值…………………………………………39 五、結論與建議………………………………………………………40 引用文獻………………………………………………………………42 附錄一 受試者同意書………………………………………………48 附錄二 受試者須知…………………………………………………52 附錄三 身體活動問卷調查表………………………………………53 附錄四 各食品/藥物咖啡因含量……………………………………54 附錄五 不同體能與誘發DOMS前、後之MVIC變異數分析摘要表..55 附錄六 不同體能與增補因子之MVIC變異數分析摘要表…………55 附錄七 不同體能與增補因子之肌肉酸痛指數變異數分析摘要表…56 附錄八 不同體能與誘發DOMS前、後之CK變異數分析摘要表…56 附錄九 不同體能與增補因子之CK活性值變異數分析摘要表……57 附錄十 不同體能與誘發DOMS前、後之LDH變異數分析摘要表…57 附錄十一 不同體能與增補因子之LDH活性值變異數分析摘要表…58 附錄十二 不同體能與誘發DOMS前、後之Histamine變異數分析摘表…58 附錄十三 不同體能與增補因子之Histamine活性值變異數分析摘要表…59 附錄十四 不同體能與誘發DOMS前、後之WBC變異數分析摘要表………59 附錄十五 不同體能與誘發DOMS前、後之NEUT變異數分析摘要表………60 表 次 表一 依變項測量時間表………………………………………………18 表二 受試者基本資料…………………………………………………23 表三 HF與LF組誘發DOMS前、後之最大自主等長肌力值…………24 表四 HF與LF組增補前後之最大自主等長肌力值…………………25 表五HF與LF組增補前後之肌肉酸痛指數…………………………26 表六 HF與LF組誘發DOMS前、後之CK活性值……………………28 表七 HF與LF組增補前、後之血清CK活性值……………………28 表八 HF與LF組誘發DOMS前、後之LDH活性值…………………29 表九 HF與LF組增補前後之血清LDH活性值………………………30 表十 HF與LF組誘發DOMS前、後之血漿Histamine活性值……31 表十一HF與LF組增補前、後之血漿Histamine活性值…………32 表十二 HF與LF組誘發DOMS前、後之WBC活性值………………32 表十三 HF與LF組誘發DOMS前、後之NEUT活性值………………33 圖 次 圖1實驗流程圖………………………………………………………17 圖 2 受試者之ㄧ接受70 %VO2max下坡跑誘發DOMS情形………20 圖3受試者之ㄧ接受最大自主等長肌力測量情形…………………21 圖 4 HF與LF組增補咖啡因與安慰劑後之最大自主等長肌力變.25 圖 5 HF與LF組增補咖啡因與安慰劑後之肌肉酸痛指數變化…27 圖 6 HF與LF組增補咖啡因與安慰劑後之血清LDH活性值變化…30

    引用文獻
    一、中文部份
    吳家慶 (2005)。不同強度動態恢復對損傷肌肉之功能及跑步經濟性的影響。未出版的博士論文,國立台灣師範大學,台北市,台灣。
    二、英文部分
    Arendt-Nielsen, L., Graven-Nielsen, T., Svensson, P., & Jensen, T. S. (1997). Temporal summation in muscles and referred pain areas: an experimental human study. Muscle & Nerve, 20(10), 1311-1313.
    Armstrong, R. B., Ogilvie, R. W., & Schwane, J. A. (1983). Eccentric exercise-induced injury to rat skeletal muscle. Journal of applied physiology, 54(1), 80-93.
    Armstrong, R. B. (1990). Initial events in exercise-induced muscular injury. Medicine and Science in Sports and Exercise, 22(4), 429-435.
    Bruehl, S., McCubbin, J. A., & Harden, R. N. (1999). Theoretical review: altered pain regulatory systems in chronic pain. Neuroscience and Biobehavioral Reviews, 23(6), 877-890.
    Carey, G. B., & Sidmore, K. A. (1994). Exercise attenuates the anti-lipolytic effect of adenosine in adipocytes isolated from miniature swine. International Journal of Obesity and Related Metabolic Disorders, 18(3), 155-160.
    Carey, G. B., Wotjukiewicz, L. J., Goodman, J. M., Reineck, K. E., & Overman, K. C. (2004). Extracellular cyclic AMP and adenosine appearance in adipose tissue of Sus scrofa: effects of exercise. Experimental Biology and Medicine (Maywood), 229(10), 1026-1032.
    Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness : treatment strategies and performance factors. Sports Medicine, 33(2), 145-164.
    Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine & Rehabilitation, 81(11 Suppl), S52-69.
    Cleak, M. J., & Eston, R. G. (1992). Delayed onset muscle soreness: mechanisms and management. Journal of Sports Sciences, 10(4), 325-341.
    Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise -induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24(5), 512-520.
    Collomp, K., Ahmaidi, S., Chatard, J. C., Audran, M., & Prefaut, C. (1992). Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. European Journal of Applied Physiology and Occupational Physiology, 64(4), 377-380.
    Connolly, D. A., Sayers, S. P., & McHugh, M. P. (2003). Treatment and prevention of delayed onset muscle soreness. Journal of Strength and Conditioning Research, 17(1), 197-208.
    Costa, F., Diedrich, A., Johnson, B., Sulur, P., Farley, G., & Biaggioni, I. (2001). Adenosine, a metabolic trigger of the exercise pressor reflex in humans. Hypertension, 37(3), 917-922.
    Dall'Igna, O. P., Porciuncula, L. O., Souza, D. O., Cunha, R. A., & Lara, D. R. (2003). Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. British Journal of Pharmacology, 138(7), 1207-1209.
    Eston, R. G., Finney, S., Baker, S., & Baltzopoulos, V. (1996). Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise. Journal of Sports Sciences, 14(4), 291-299.
    Eston, R. G., Lemmey, A. B., McHugh, P., Byrne, C., & Walsh, S. E. (2000). Effect of stride length on symptoms of exercise-induced muscle damage during a repeated bout of downhill running. Scandinavian Journal of Medicine & Science in Sports, 10(4), 199-204.
    Ghione, S. (1996). Hypertension-associated hypalgesia: Evidence in experimental animals and humans, pathophysiological mechanisms, and potential clinical consequences. Hypertension, 28(3), 494-504.
    Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Medicine, 31(11), 785-807.
    Gulick, D. T., Kimura, I. F., Sitler, M., Paolone, A., & Kelly, J. D. (1996). Various treatment techniques on signs and symptoms of delayed onset muscle soreness. Journal of Athletic Training, 31(2), 145-152.
    Hasko, G., & Cronstein, B. N. (2004). Adenosine: an endogenous regulator of innate immunity. Trends in immunology, 25(1), 33-39.
    Holloszy, J. O. (1982). Muscle metabolism during exercise. Archives of Physical Medicine and Rehabilitation, 63(5), 231-234.
    Jacobson, B. H., Weber, M. D., Claypool, L., & Hunt, L. E. (1992). Effect of caffeine on maximal strength and power in elite male athletes. British Journal of Sports Medicine, 26(4), 276-280.
    James, R. S., Kohlsdorf, T., Cox, V. M., & Navas, C. A. (2005). 70 microM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle. European Journal of Applied Physiology, 95(1), 74-82.
    Kalmar, J. M., & Cafarelli, E. (1999). Effects of caffeine on neuromuscular function. Journal of Applied Physiology, 87(2), 801-808.
    Keogh, E., & Witt, G. (2001). Hypoalgesic effect of caffeine in normotensive men and women. Psychophysiology, 38(6), 886-895.
    Koller, A. (2005). Creatine phosphokinase and muscle damage. Medicine and Science in Sports and Exercise, 37(1), 166; author reply 167.
    Lanigan, C., Howes, T. Q., Borzone, G., Vianna, L. G., & Moxham, J. (1993). The effects of beta 2-agonists and caffeine on respiratory and limb muscle performance. The European Respiratory Journal, 6(8), 1192-1196.
    MacIntyre, D. L., Sorichter, S., Mair, J., Berg, A., & McKenzie, D. C. (2001). Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. European Journal of Applied Physiology, 84(3), 180-186.
    Maridakis, V., O'Connor, P. J., Dudley, G. A., & McCully, K. K. (2007). Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. The Journal of Pain, 8(3), 237-243.
    Motl, R. W., O'Connor P, J., Tubandt, L., Puetz, T., & Ely, M. R. (2006). Effect of caffeine on leg muscle pain during cycling exercise among females. Medicine and Science in Sports and Exercise, 38(3), 598-604.
    Motl, R. W., O'Connor, P. J., & Dishman, R. K. (2003). Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. The Journal of Pain, 4(6), 316-321.
    Myers, D. E., Shaikh, Z., & Zullo, T. G. (1997). Hypoalgesic effect of caffeine in experimental ischemic muscle contraction pain. Headache, 37(10), 654-658.
    O'Connor, P. J., & Cook, D. B. (1999). Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exercise and sport sciences reviews, 27, 119-166.
    O'Connor, P. J., Motl, R. W., Broglio, S. P., & Ely, M. R. (2004). Dose-dependent effect of caffeine on reducing leg muscle pain during cycling exercise is unrelated to systolic blood pressure. Pain, 109(3), 291-298.
    Paddon-Jones, D. J., & Quigley, B. M. (1997). Effect of cryotherapy on muscle soreness and strength following eccentric exercise. International Journal of Sports Medicine, 18(8), 588-593.
    Quindry, J. C., Stone, W. L., King, J., & Broeder, C. E. (2003). The effects of acute exercise on neutrophils and plasma oxidative stress. Medicine and Science in Sports and Exercise, 35(7), 1139-1145.
    Rosa, C., Vignocchi, G., Panattoni, E., Rossi, B., & Ghione, S. (1994). Relationship between increased blood pressure and hypoalgesia: additional evidence for the existence of an abnormality of pain perception in arterial hypertension in humans. Journal of human hypertension, 8(2), 119-126.
    Sawynok, J. (1998). Adenosine receptor activation and nociception. European Journal of Pharmacology, 347(1), 1-11.
    Sawynok, J., & Liu, X. J. (2003). Adenosine in the spinal cord and periphery: release and regulation of pain. Progress in Neurobiology, 69(5), 313-340.
    Schneiker, K. T., Bishop, D., Dawson, B., & Hackett, L. P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine and Science in Sports and Exercise, 38(3), 578-585.
    Sheps, D. S., Bragdon, E. E., Gray, T. F., 3rd, Ballenger, M., Usedom, J. E., & Maixner, W. (1992). Relation between systemic hypertension and pain perception. The American journal of cardiology, 70(16), 3F-5F.
    Skinner, J. S., & McLellan, T. H. (1980). The transition from aerobic to anaerobic metabolism. Research Quarterly for Exercise and Sport, 51(1), 234-248.
    Smith, L. L. (1991). Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Medicine and Science in Sports and Exercise, 23(5), 542-551.
    Stuart, G. R., Hopkins, W. G., Cook, C., & Cairns, S. P. (2005). Multiple effects of caffeine on simulated high-intensity team-sport performance. Medicine and Science in Sports and Exercise, 37(11), 1998-2005.
    Walsh, B., Tonkonogi, M., Malm, C., Ekblom, B., & Sahlin, K. (2001). Effect of eccentric exercise on muscle oxidative metabolism in humans. Medicine and Science in Sports and Exercise, 33(3), 436-441.
    Williams, H. M. (2005). Nutrition for Health, Fitness, & sport (7th ed).New York, NY: McGraw-Hill.

    QR CODE