研究生: |
張書瑜 Chang, Su-Yu |
---|---|
論文名稱: |
利用加速規與陀螺儀進行樓梯、斜坡與平地行走之動作判讀 Using Accelerometer and Gyro to Recognize Ascending and Descending Stairs as well as Uphill, Downhill and Level Walking |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 加速度 、角速度 、感測器 |
英文關鍵詞: | acceleration, angular velocity, sensor |
論文種類: | 學術論文 |
相關次數: | 點閱:286 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:目前市面上的活動計量計僅能以加速度大小和步數計算使用者的身體活動量,對於步態相似但是消耗能量不同的動作 (如:上下樓梯、斜坡、平地行走),則可能產生估算的誤差,因此,本研究希望能透過加速規與陀螺儀感測器進行樓梯、斜坡與平地行走的動作判讀,未來協助提升活動計量計的準確度。方法:本研究共招募30位健康受試者,將感測器固定於左腳腳踝外側鞋面,於上下樓梯(兩種階高)、上下斜坡,以及平地行走各收取三筆資料,所有資料進行10 Hz低通濾波,步態分期後擷取著地期和離地期特徵點的角速度與加速度值繪製散佈圖,再以單因子變異數分析探討七種動作之間的差異性,找出不同動作間判讀的參數依據以及進行動作判讀時最有效率的軸向。結果:著地期的陀螺儀y軸(腳踝蹠屈/背屈角速度)在七種動作間的訊號分佈差異較為明顯,僅有下坡與平地走、上坡與上樓梯,以及上樓梯(低階)與上樓梯(高階)之間無顯著差異,其他組別間的差異性均達顯著。著地期踝關節特徵點的蹠屈/背屈角速度在下樓梯時,兩種階高之間有顯著差異,但上樓梯時差異則未達顯著,另外,不同階高的下樓梯踝關節角速度都和上樓梯有顯著差異。結論:腳踝的蹠屈/背屈角速度在判讀不同地形步行活動時,最能夠作為判讀依據。
Purpose: Nowadays, we used digital sensors to calculate energy consumption only by the value of acceleration and the numbers of step. These methods might not be accurate with similar movements. Therefore, this study was designed to use accelerometer and gyro to recognize ascending and descending stairs as well as uphill, downhill, and level walking. Method: This study included 30 healthy subjects. The sensor was stabilized outside the shoe at left ankle. Subjects were asked to perform 7 movements including ascending/descending stairs (two different stairs), uphill, downhill, and level walking. All the accelerometer and gyro data were smoothed by a 10 Hz low-pass filter. One-way ANOVA was used to determine the difference among movements. Result: The angular velocity of ankle dorsi/plantar flexion at heel contact showed significant difference among the 7 movements, only downhill and level walking, uphill and upstairs, as well as upstairs (low) and upstairs (high) showed no significant difference. Therefore, the angular velocity of ankle dorsi/plantar flexion should be the indicator to determine activities on different landforms.
Anastasopoulou, P., Tubic, M., Schmidt, S., Neumann, R., Woll, A., & Härtel, S. (2014) Validation and comparison of two methods to assess human energy expenditure during free-Living activities. Plos one, 9(2), e90606.
Arai, T., Obuchi, S., Shiba, Y., Omuro, K., Nakano, C., & Higashi, T. (2008) The feasibility of measuring joint angular velocity with a gyro-sensor. Archives of Physical Medicine and Rehabilitation, 89(1), 95-99.
Atallah, L., Lo, B., King, R., &Yang, G. Z. (2011) Sensor positioning for activity recognition using wearable accelerometers. Transactions on Biomedical Circuits and Systems, 5(4), 320–329.
Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., & Janssen, J. D. (1997) The feasibility of measuring joint angular velocity with a gyro-sensor. Archives of Physical Medicine and Rehabilitation, 89(1), 95-99.
Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., & Janssen, J. D. (1997) A tri-axial accelerometer and portable data processing unit for the assessment of daily physical activity. Transactions on Biomedical Engineering, 44(3), 136-147.
Brauner, T., Sterzing, T., & Milani, T. L. (2009, July) Ankle frontal plane kinematics determined by goniometer, gyrometer and motion analysis system: A measurement device validation [Abstract]. Cape Town, South Africa: XXII Congress of the International Sociaty of Biomechanics.
Butte, N. F., Ekelund, U., & Westerterp, K. R. (2012) Assessing physical activity using wearable monitors: measures of physical activity. Medicine and Science in Sports and Exercise. 44(1), 5-12.
Chen, K. Y., & Sun, M. (1997) Improving energy expenditure estimation by using a triaxial accelerometer. Journal of Applied Physiology, 83(6), 2112-2122.
Chen, K. Y., & Bassett Jr., D. R. (2005) The technology of accelerometry-based activity monitors: current and future. Medicine and Science in Sports and Exercise, 37(11), 490-500.
Colley, R. C. & Tremblay, M. S. (2011) Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. Journal of Sports Sciences, 29(8), 783-789.
Czabke, A., Marsch, S., & Lueth, T.C. (2011) Accelerometer based real-time activity analysis on a microcontroller. In: 5th International Conference on Pervasive Computing Technologies for Healthcare (Pervasive Health) and workshop, Dublin.
Farve, J., Jolles, B. M., Aissaoui, R., & Aminian, K. (2008) Ambulatory measurement of 3D knee joint angle. Journal of Biomechanics, 41(5), 1029-1035.
Fong, D. T. P., & Chan, Y. Y. (2010) The use of wearable inertial motion sensors in human lower limb biomechanics studies: A systematic review. Sensors, 10(12), 11556-11565
Gao, L., Bourke, A.K., & Nelson, J. (2011, August) A system for activity recognition using multi-sensor fusion. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA.
Hendelman, D., Miller, K., Baggett, C., Debold, E., &Freedson, P. (2000) Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine and Science in Sports and Exercise, 32 (9), S442-449.
Kang, D. W., Choi, J. S., Lee, J. W., &Tack, G. R. (2012) Prediction of energy consumption according to physical activity Intensity in daily life using accelerometer. International Journal of Precision Engineering Manufacturing, 13(4), 617-621.
Kavanagh, J. J., & Menz, H. B. (2008) Accelerometry: a technique for quantifying movement patterns during walking. Gait and Posture, 28(1), 1-15.
Kurihara, Y., Watanabe, K., & Yoneyama M. (2012) Estimation of walking exercise intensity using 3-D acceleration sensor. Transactions on Systems, Man, and Cybernetics, 42(4), 495-499.
Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2011) Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2), 74-82.
Lay, A. N., Hass, C. J., & Gregor, R. J. (2006) The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. Journal of Biomechanics, 39(9), 1621-1628.
Lee, J. B., Mellifont, R. B., & Burkett, B. J. (2010) The use of a single inertial sensor to identify stride, step, and stance durations of running gait. Journal of Science and Medicine in Sport, 13(2), 270-273.
Lee, J. B., Sutter, K. J., Askew, C. D., & Burkett, B. J. (2010) Identifying symmetry in running gait using a single inertial sensor. Journal of Science and Medicine in Sport, 13(5), 559-563.
Lee, S. W., Mase, K., & Kogure, K. (2005) Detection of spatio-temporal gait parameters by using wearable motion sensors [Abstract]. Conference Proceedings (p. 6836-6839). Minneapolis, U.S.A., Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Liang, Y., Zhou, X., Yu, Z., Guo, B., & Yang, Y. (2012) Energy efficient activity recognition based on low resolution accelerometer in smart phones. In Advances in Grid and Pervasive Computing (p. 122-136). Springer Berlin Heidelberg.
Liu, K., Liu, T., Shibata, K., Inoue, Y., & Zheng, R. (2009) Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system. Journal of Biomechanics, 42(16), 2747-2752.
Liu, T., Inoue, Y., & Shibata, K. (2009) Development of a wearable sensor system for quantitative gait analysis. Journal of Biomechanics, 42(7), 978-988.
Plasqui, G. & Westerterp, K. R. (2007) Physical activity assessment with accelerometers: An evaluation against doubly labeled water. Obesity, 15(10), 2371-2379.
Martin, H., Bernardos, A.M., Tarrio, P. & Casar, J. R. (2011) Enhancing activity recognition by fusing inertial and biometric information. In: Proceedings of the 14th International Conference on Information Fusion, Chicago, IL.
McIntosh, A. S., Beatty, K. T., Dwan, L. N., & Vickers, D. R. (2006) Gait dynamics on an inclined walkway. Journal of Biomechanics, 39(13), 2491-2502.
Nadeau, S., McFadyen, B. J., & Malouin, F. (2003) Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? Clinical Biomechanics, 18(10), 950-959.
O’Donovan, K. J., Kamnik, R., O’Keeffe, D. T., & Lyons, G. M. (2007) An inertial and magnetic sensor based technique for joint angle measurement. Journal of Biomechanics, 40(12), 2604-2611.
Protopapadaki, A., Drechsler, W. I., Cramp, M. C., Coutts, F. J., & Scott, O. M. (2007) Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clinical Biomechanics, 22(2), 203-210.
Reiss, A., & Stricker, D. (2011, August). Introducing a modular activity monitoring system. In Engineering in Medicine and Biology Society (p. 5621-5624) Boston, MA: 2011 Annual International Conference of the IEEE.
Reswick, J., Perry, J., Antonelli, D., Su, N., & Freeborn, C. (1978) Preliminary evaluation of the vertical acceleration gait analyzer [Abstract]. Book of Abstracts (p. 305-314). Dubrovnik, Yugoslavia: Proceedings 6th Annual Symptom of External Control Extremities.
Sazonov, E.S., Fulk, G., Hill, J., Schutz, Y., & Browning, R. (2011) Monitoring of posture allocations and activities by a shoe-based wearable sensor. Transactions on Biomedical Engineering, 58(4), 983–990.
Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett Jr., D. R., (2003) Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and Science in Sports and Exercise, 35(10), 1779-1784.
Shih, Y., Ho, C. S., & Shiang, T. Y. (2014) Measuring kinematic changes of the foot using a gyro sensor during intense running. Journal of Sports Sciences, 32(6), 550-556.
Strath, S. J., Bassett Jr., D. R., Swartz, A. M., & Thompson, D. L. (2001) Simultaneous heart rate-motion sensor technique to estimate energy expenditure. Medicine and Science in Sports and Exercise. 33(12), 2218-2123.
Strath, S. J., Brage, S., & Ekelund, U. (2005) Integration of physiological and accelerometer data to improve physical activity assessment. Medicine and Science in Sports and Exercise, 37(11), 563-571.
Sun, L., Zhang, D., Li, B., Guo, B., & Li, S. (2010) Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Ubiquitous Intelligence and Computing (p. 548-562). Springer Berlin Heidelberg.
Swartz, A. M., Strath, S. J., Bassett, D. B. Jr, O’brien, W. L., King, G. A., & Ainseorth, B. E. (2000) Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Medicine and Science in Sports and Exercise, 32(9), 450–456.
Takeda, R., Tadano, S., Todoh, M., Morikawa, M., Nahayasu, M., & Yashinari, S. (2009) Gait analysis using gravitational acceleration measured by wearable sensors. Journal of Biomechanics, 42(3), 223-233.
Tong, K. Y., & Granat, M. H. (1999) A practical gait analysis system using gyroscopes. Medical Engineering and Physics, 21(2), 87-94.
Trost, S. G., Mciver, K. L., & Pate, R. R. (2005) Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise. 37(11), 531-543.
Ugulino, W., Cardador, D., Vega, K., Velloso, E., Milidiú, R., & Fuks, H. (2012) Wearable computing: accelerometers’ data classification of body postures and movements. In Advances in Artificial Intelligence-SBIA 2012 (p. 52-61) Springer Berlin Heidelberg.
Wang, J. S., Lin, C. W., Yang, Y. T., & Ho, Y. J. (2012) Walking pattern classification and walking distance estimation algorithms using gait phase information. Transactions on Biomedical Engineering, 59(10), 2884-2892.
Welk, G.J., Schaben, J. A., & Morrow Jr., J.R. (2004) Reliability of accelerometry-based activity monitor: A generalizability study. Medicine and Science in Sports and Exercise, 36(9), 1637-1645.
Westerterp, K. R. (1999) Physical activity assessment with accelerometers. International Journal of Obesity. 23(3), 45-49.
Yalcin, C., Marin-Perianu, M., Marin-Perianu, R., & Havinga, P. (2011) Recognition of walking activities using wireless inertial and orientations Sensors: a performance evaluation. In: 7th International Conference on Intelligent Environments, Nottingham, UK.
Zhang, Y., Markovic, S., Sapir, I., Wagenaar, R. C. & Little, T. D. (2011, May) Continuous functional activity monitoring based on wearable tri-axial accelerometer and gyroscope. In Pervasive computing technologies for healthcare (pervasive health), 2011 5th International Conference on (p. 370-373) Dublin.