簡易檢索 / 詳目顯示

研究生: 呂沛儒
Lu, Pei-Ju
論文名稱: 鋁金屬有機骨架在酸鹼溶液處理下晶態轉變之研究
Research on revealing the crystalline state transformation of Al-based metal organic frameworks under treatments of acidic and basic solutions
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 楊仲準
Yang, Chun-Chuen
蔡振彥
Tsai, Chen-Yen
蔡明剛
Tsai, Ming-Kang
林嘉和
Lin, Chia-Her
口試日期: 2024/06/03
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 143
中文關鍵詞: 金屬有機骨架雙溶劑置換加熱抽真空
英文關鍵詞: Metal-Organic Framework, Two Solvent Exchange, Heat Under Vacuum
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400703
論文種類: 學術論文
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 謝辭 i 摘要 ii Abstract iii 目次 v 表目次 vii 圖目次 ix 第一章 緒論 1 1-1 MOF介紹 1 1-2 MOF的自組裝 4 1-3 Al-MOF簡介 8 1-4 MOF缺陷、活化與結晶性 16 1-5 MOF在水相中的穩定度 23 1-6研究動機 25 第二章 實驗與儀器 27 2-1 實驗藥品 27 2-2 儀器設備 29 2-3 實驗合成方法 33 第三章 結果與討論 39 第一部分 MOF快速自組裝合成探討 39 3-1 MOF快速自組裝-粉末X光繞射(PXRD)鑑定 39 3-2 MOF快速自組裝-場發式掃描電子顯微鏡(FE-SEM)鑑定 44 3-3 MOF快速自組裝-比表面積及孔隙分析儀鑑定 47 3-4 MOF快速自組裝-熱穩定性(TGA)鑑定 63 第二部分 酸鹼水溶液下MOF的穩定度探討 67 3-5 浸泡酸鹼水溶液-粉末X光繞射(PXRD)鑑定 67 3-6 浸泡酸鹼水溶液-場發式掃描電子顯微鏡 (FE-SEM)鑑定 102 3-7 浸泡酸鹼水溶液-比表面積及孔隙分析儀鑑定 108 3-8 浸泡酸鹼水溶液-熱穩定性(TGA)鑑定 128 3-9 浸泡酸鹼水溶液-傅立葉轉換紅外線光譜儀(FTIR)鑑定 133 3-10 浸泡酸鹼水溶液-固態核磁共振光譜儀鑑定 134 第四章 結論 135 參考文獻 137 附錄 141

    1. Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F.-X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-metal metal–organic frameworks. Chem Soc Rev 2019, 48 (9), 2535-2565. DOI: 10.1039/c8cs00337h.
    2. Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. A historical overview of the activation and porosity of metal-organic frameworks. Chem Soc Rev 2020, 49 (20), 7406-7427. DOI: 10.1039/d0cs00997k.
    3. Figueroa-Quintero, L.; Villalgordo-Hernandez, D.; Delgado-Marin, J. J.; Narciso, J.; Velisoju, V. K.; Castano, P.; Gascon, J.; Ramos-Fernandez, E. V. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. Small Methods 2023, 7 (4), e2201413. DOI: 10.1002/smtd.202201413.
    4. Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444. DOI: 10.1126/science.1230444.
    5. Chaouiki, A.; Chafiq, M.; Ko, Y. G. The art of controlled nanoscale lattices: A review on the self-assembly of colloidal metal–organic framework particles and their multifaceted architectures. Mater. Sci. Eng. R Rep 2024, 159. DOI: 10.1016/j.mser.2024.100785.
    6. Huang, G.; Yang, L.; Yin, Q.; Fang, Z. B.; Hu, X. J.; Zhang, A. A.; Jiang, J.; Liu, T. F.; Cao, R. A Comparison of Two Isoreticular Metal-Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angew. Chem. Int. Ed. 2020, 59 (11), 4385-4390. DOI: 10.1002/anie.201916649.
    7. Dong, R.; Han, P.; Arora, H.; Ballabio, M.; Karakus, M.; Zhang, Z.; Shekhar, C.; Adler, P.; Petkov, P. S.; Erbe, A.; et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 2018, 17 (11), 1027-1032. DOI: 10.1038/s41563-018-0189-z.
    8. Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45 (36), 5974-5978. DOI: 10.1002/anie.200601878.
    9. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130 (21), 6774-6780. DOI: 10.1021/ja710973k.
    10. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9-10), 1051-1069. DOI: 10.1515/pac-2014-1117.
    11. Mashhadzadeh, A. H.; Taghizadeh, A.; Taghizadeh, M.; Munir, M. T.; Habibzadeh, S.; Salmankhani, A.; Stadler, F. J.; Saeb, M. R. Metal-Organic Framework (MOF) through the Lens of Molecular Dynamics Simulation: Current Status and Future Perspective. J. Compos. Sci. 2020, 4 (2). DOI: 10.3390/jcs4020075.
    12. Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1 (9), 695-704. DOI: 10.1038/nchem.444.
    13. Zhang, S. Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J. Modulation of Water Vapor Sorption by a Fourth-Generation Metal-Organic Material with a Rigid Framework and Self-Switching Pores. J. Am. Chem. Soc. 2018, 140 (39), 12545-12552. DOI: 10.1021/jacs.8b07290.
    14. Stein, A.; Keller, S. W.; Mallouk, T. E. Turning down the heat: design and mechanism in solid-state synthesis. Science 1993, 259 (5101), 1558-1564. DOI: 10.1126/science.259.5101.1558.
    15. Ramanan, A.; Whittingham, M. S. How Molecules Turn into Solids:  the Case of Self-Assembled Metal−Organic Frameworks. Cryst. Growth Des. 2006, 6 (11), 2419-2421. DOI: 10.1021/cg0604273.
    16. Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132 (51), 18030-18033. DOI: 10.1021/ja109268m.
    17. Goesten, M. G.; de Lange, M. F.; Olivos-Suarez, A. I.; Bavykina, A. V.; Serra-Crespo, P.; Krywka, C.; Bickelhaupt, F. M.; Kapteijn, F.; Gascon, J. Evidence for a chemical clock in oscillatory formation of UiO-66. Nat. Commun. 2016, 7, 11832. DOI: 10.1038/ncomms11832.
    18. Fan, W.; Wang, K.-Y.; Welton, C.; Feng, L.; Wang, X.; Liu, X.; Li, Y.; Kang, Z.; Zhou, H.-C.; Wang, R.; et al. Aluminum metal–organic frameworks: From structures to applications. Coord. Chem. Rev. 2023, 489. DOI: 10.1016/j.ccr.2023.215175.
    19. Volkringer, C.; Loiseau, T.; Haouas, M.; Taulelle, F.; Popov, D.; Burghammer, M.; Riekel, C.; Zlotea, C.; Cuevas, F.; Latroche, M.; et al. Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al4(OH)8[C10O8H2] (MIL-120): Synthesis, Structure, and Gas Sorption Properties. Chem. Mater. 2009, 21 (24), 5783-5791. DOI: 10.1021/cm9023106.
    20. Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chem. Mater. 2012, 25 (1), 17-26. DOI: 10.1021/cm3025445.
    21. Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J.; Yaghi, O. M. Practical water production from desert air. Sci. Adv. 2018, 4 (6), eaat3198. DOI: 10.1126/sciadv.aat3198.
    22. Fang, Z.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defect-Engineered Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2015, 54 (25), 7234-7254. DOI: 10.1002/anie.201411540.
    23. Pang, Q.; Yang, L.; Li, Q. Vacancies in Metal−Organic Frameworks: Formation, Arrangement, and Functions. Small Structures 2022, 3 (5). DOI: 10.1002/sstr.202100203.
    24. Fu, Y.; Yao, Y.; Forse, A. C.; Li, J.; Mochizuki, K.; Long, J. R.; Reimer, J. A.; De Paepe, G.; Kong, X. Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 2023, 14 (1), 2386. DOI: 10.1038/s41467-023-38155-8.
    25. Mohamed, S. A.; Kim, Y.; Lee, J.; Choe, W.; Kim, J. Understanding the Structural Collapse during Activation of Metal-Organic Frameworks with Copper Paddlewheels. Inorg. Chem. 2022, 61 (25), 9702-9709. DOI: 10.1021/acs.inorgchem.2c01171.
    26. Ma, J.; Kalenak, A. P.; Wong-Foy, A. G.; Matzger, A. J. Rapid Guest Exchange and Ultra-Low Surface Tension Solvents Optimize Metal-Organic Framework Activation. Angew. Chem. Int. Ed. 2017, 56 (46), 14618-14621. DOI: 10.1002/anie.201709187.
    27. Lo, S.-H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.-Y.; Li, B.-H.; Liu, W.-L.; Day, G. S.; Tao, S.; et al. Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nat. Chem. 2019, 12 (1), 90-97. DOI: 10.1038/s41557-019-0364-0.
    28. Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Kral, P.; Mirsaidov, U. Three-step nucleation of metal-organic framework nanocrystals. PNAS 2021, 118 (10). DOI: 10.1073/pnas.2008880118.
    29. Spore, A. B.; Rosi, N. L. Effect of countercation on the water stability of an anionic metal–organic framework. CrystEngComm 2017, 19 (36), 5417-5421. DOI: 10.1039/c7ce01228d.
    30. Wang, C.; Liu, X.; Keser Demir, N.; Chen, J. P.; Li, K. Applications of water stable metal-organic frameworks. Chem Soc Rev 2016, 45 (18), 5107-5134. DOI: 10.1039/c6cs00362a.
    31. Yoo, Y.; Varela-Guerrero, V.; Jeong, H. K. Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying. Langmuir 2011, 27 (6), 2652-2657. DOI: 10.1021/la104775d.
    32. Van Vleet, M. J.; Weng, T.; Li, X.; Schmidt, J. R. In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. Chem. Rev. 2018, 118 (7), 3681-3721. DOI: 10.1021/acs.chemrev.7b00582.
    33. Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114 (20), 10575-10612. DOI: 10.1021/cr5002589.
    34. Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 2013, 244-245, 444-456. DOI: 10.1016/j.jhazmat.2012.11.011.
    35. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2011, 112 (2), 1105-1125. DOI: 10.1021/cr200324t.
    36. Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 2015, 5 (60), 48433-48441. DOI: 10.1039/c5ra04033g.
    37. Mashkovtsev, M.; Tarasova, N.; Baksheev, E.; Rychkov, V.; Zhuravlev, N.; Solodovnikova, P.; Galiaskarova, M. Spectroscopic Study of Five-Coordinated Thermal Treated Alumina Formation: FTIR and NMR Applying. Int. J. Mol. Sci. 2023, 24 (6). DOI: 10.3390/ijms24065151.
    38. He, C.; Li, S.; Jiang, B.; Chen, F.; Hu, W.; Deng, F. Surface Hydrophobicity and Guest Permeability in Polydimethylsiloxane-Coated MIL-53 as Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy. ACS Appl. Mater. Interfaces. 2023, 15 (31), 37936-37945. DOI: 10.1021/acsami.3c07142.
    39. Zhao, Z.; Xiao, D.; Chen, K.; Wang, R.; Liang, L.; Liu, Z.; Hung, I.; Gan, Z.; Hou, G. Nature of Five-Coordinated Al in gamma-Al(2)O(3) Revealed by Ultra-High-Field Solid-State NMR. ACS Cent. Sci. 2022, 8 (6), 795-803. DOI: 10.1021/acscentsci.1c01497.

    無法下載圖示 電子全文延後公開
    2026/06/30
    QR CODE