簡易檢索 / 詳目顯示

研究生: 莊富傑
論文名稱: 全像光學元件之表面特徵診斷
Optical diagnosis of surface features in holographic optical element
指導教授: 郭文娟
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 43
中文關鍵詞: 差動共焦顯微術全像光學元件
英文關鍵詞: differential confocal microscopy, holographic optical element
論文種類: 學術論文
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以正立式的架構搭建一套差動共焦顯微鏡,此系統的架構、元件和儀器的規格,及架構的設計文中也有詳細描述。系統以波長為632.8nm之光源、數值孔徑為0.8之物鏡為主,其縱向與橫向解析度分別可至4.2nm及422nm,並且動態範圍為500nm。由於差動共焦顯微術的軸向解析率限制主要來自系統的雜訊,經排除機械震動、光學雜訊與電性擾動等因素,可得到75.7dB的差動共焦訊雜比。
    利用差動共焦顯微術對奈米級表面起伏的敏感性、及非侵入性、非破壞性、非接觸性等優勢,量測出幾種樣品的表面輪廓(例如:微透鏡、高分子膜、一維光柵和二維光子晶體)。並藉由最大可能估計法(maximum-likelihood estimation algorithm,MLE)來提升影像的橫向解晰度。

    In this thesis, a homemade differential confocal microscopy (DCM) in upright configuration was constructed successfully. The setup of the system, specification of the elements, optical beam path configurations are described in this thesis. Using light wavelength of 632.8nm, objective lens of 0.8 numerical aperture, axial and lateral resolution can reached to 4.2nm and 422 nm respectively, and dynamic range reached to 500 nm. The axial resolution of DCM is mainly limited by system noises, including mechanical vibration, optical background and electric noises. After noise was well excluded, the measured signal to noise ratio (SNR) reached to 75.7dB.
    Using the nanometer depth sensitivity of DCM, we measured the surface profile of several devices (e.g. microlens, polymer membrane, one-dimensional phase grating and two-dimensional photonic crystal) in non-invasive, non-contact, and non-destroy method. The lateral resolution of the topographic images is further enhanced by maximum-likelihood estimation (MLE) algorithm.

    Chapter 1 Introduction.....................................1 Chapter 2 Material & Method................................4 2.1 Optical Setup..........................................4 2.2 Measurement principle.................................11 2.3 Maximum likelihood estimation (MLE) algorithm.........17 Chapter 3 System calibration..............................19 3.1 The correction of the piezoelectric device............19 3.2 Axial resolution......................................23 3.3 Lateral resolution....................................26 3.4 Signal-to-noise ratio.................................28 Chapter 4 Results.........................................29 4.1 Microlens.............................................29 4.2 Polymer Membrane......................................30 4.3 1-D Phase Grating.....................................31 4.4 2-D Photonic crystal..................................34 4.5 lateral resolution improvement........................36 Chapter 5 Discussion and conclusion.......................39 References................................................41

    References
    [1] C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233 (1997).
    [2] C. H. Lee, H. Y. Chiang, and H.Y.Mong, “Sub-diffraction-limit imaqing based on the topographic contrast of differential confocal microscopy,” Opt. Lett. 28, 1772 (2003).
    [3] C. H. Lee, W. C. Lin, and J. P. Wang, “Using differential confocal microscopy to detect the phase transition of lipid vesicle membranes,” Opt. Eng. 40(10) 2077, (2001).
    [4] P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature 223, 831(1969)
    [5] 李超煌, “差動共焦顯微術及其應用,” 國立台灣大學電機工程學研究所博士論文
    [6]詹益鑑, “內嵌光鉗差動共焦顯微鏡的架設與特性量測,” 國立台灣大學電機工程學研究所博士論文
    [7]徐豐源, “倒立式內嵌光鉗差動共焦顯微術系統之設計與裝置,” 國立台灣大學電機工程學研究所碩士論文
    [8]陳柏菁, “共焦顯微術系統之設計與裝置,” 國立台灣大學電機工程學研究所碩士論文
    [9] T. Wilson, in: Confocal Microscopy, ed. T. Wilson (Academic Press Ltd, London, 1990) Chap. 1.
    [10] M. Born and E. Wolf, Principles of Optics, 6th Ed. (Pergamon Press Ltd, Oxford, 1980) Chap. 8.
    [11] 許慈軒, 廖唯昱, 王俊杰, 蕭建隆, 李超煌, “解析率明視野顯微術的生醫應用,” 2007, 物理雙月刊.
    [12] Holmes TJ, Bhattacharyya S, Cooper JA, Hanzel D, Krishnamurti V, et al: Light Microscopic Images reconstructed by maximuin Iikelihood deconvolution. Handbook of biological Confocal Microscopy, Plenum Press, New York, pp 389-402, 1995.
    [13] G. M. P. van Kempen, H. T. M. van der Voort, J. G. J. Bauman, and K. C. Strasters, “Comparing maximum likelihood estimation and constrained tikhonov-miller restoration,” IEEE Eng. Med. Biol. Mag. 15, 76 (1996).
    [14]Colin J. R. Sheppard, Min Gu, Keith Brain, and Hao Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994)
    [15]C. J. R. Sheppard and M. Gu, "Aberration compensation in confocal microscopy," Appl. Opt., vol. 30, pp. 3563, 1991.
    [16] A. Dubois, L. Vabre, A. -C. Boccara, and E. Beaurepaire, "High-Resolution Full-Field Optical Coherence Tomography with a Linnik Microscope," Appl. Opt. 41, 4, 805-812
    [17] E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, "Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays," Appl. Phys. Lett. 84, 2754 (2004).
    [18]Cogswell CJ, O'Byrne JW (1992) A high resolution confocal transmission microscope: I. System design. Proceedings of SPIE, 1660, 503-511
    [19]Romagnoli, Ling Guan, J.W. O'Byrne, C.J. Cogswell, Transmission confocal microscopy: making it a reality, Proc. SPIE 3261, 50-59 (1998) - 27-29 January 1998
    [20] Jeong, K., Kim, J., and Lee, L. P., “Biologically inspired artificial compound eyes,” Science, Vol. 312, pp. 557-561, 2006.
    [21]Duparré J., Dannberg P., Schreiber P., Bräuer A., Tünnermann A. (2005). Thin compound eye camera. Applied Optics 44(15): 2949–2956
    [22] S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
    [23] Jaques Boutet de Monvel, Sophie Le Calvez, and Mats Ulfendahl. Image restoration for confocal microscopy: Improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Bio- phisical Journal, 80(5):2455{2470, 2001.
    [24] Chrysante Preza and Jos_e-Angel Conchello. Image estimation accounting for point-spread function depth variation in thee-dimensional uorescence microscopy. 3D and Multidimensional Microscopy: Image Aquisition and Pro- cessing X, Proc. SPIE, 4964(27), 2003.

    下載圖示
    QR CODE