研究生: |
梁哲銘 LIANG, CHE-MING |
---|---|
論文名稱: |
以第一原理與分子動力學研究超臨界水:紅外線光譜的特徵峰 Infrared Spectroscopic Fingerprint of Supercritical Water :A First-Principle Molecular Dynamic Study |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | 超臨界水 、紅外線振動光譜 、徑向分布 、分子動力學 |
英文關鍵詞: | Supercritical water, Infrared vibration spectrum, Radial Distribution, Molecular Dynamics |
DOI URL: | https://doi.org/10.6345/NTNU202204441 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超臨界流體逐漸從學術研究走向實際應用,水的超臨界流體更是應用於核反應爐的製造,然而高溫高壓的環境中,對物質的影響仍屬於大量未知的灰色地帶,在傳統認知中,超臨界流體是勻相的,然而有些文獻表示,水在超臨界流體狀態下是非勻相的,本文透過理論計算研究在超臨界狀態下,水分子的空間分布得到論證;文獻中提及在超臨界水的狀態下,水的紅外線振動光譜會有明顯的超頻吸收,作為超臨界流體狀態的指標。
本文從少量水分子在固定能量的情況下,利用分子動力學模擬水分子於真空中的振動光譜模型,隨著水分子數的增加,水分子間的氫鍵作用逐漸明顯,同時觀察到在超頻區的吸收逐漸變弱,藉此說明在超臨界狀態下,水的紅外線吸收光譜在高頻區的明顯吸收,主要是有小型分子簇或單分子水的存在。其後以大量的水分子進行真實模擬,並在系統中搜尋小型分子簇的存在,研究超臨界狀態中是否存在大量的小型分子簇,以證實文獻中超臨界狀態下,水的超頻吸收。
It is noticed that supercritical fluid can play a special role in chemical reaction as solvent. Supercritical water becomes important role in manufacturing 4th generation nuclear power reactor. However, we still lack the knowledge of supercritical water due to the high temperature and high pressure. For example, it was consensus that supercritical fluid is homogeneous. Some works imply that supercritical water is heterogeneous. In this article, we reveal some property of supercritical water through theoretical calculation. With molecular dynamics, we would like to analyze the special distribution and the infrared-radiation (IR) spectrum for supercritical water.
Beginning with small amount of water molecule, we simulate water in vacuum. With the increase of the number of water molecule, it indicates that hydrogen bonding has strong effect on high frequency intensity which is overtone in IR spectrum. The overtone is relatively significant in supercritical water. According to the simulation with more number of water, we analyze the special distribution of water molecule in supercritical water. There is a large amount of small water cluster. It implies that the obvious overtone signal is caused by the small water cluster in supercritical water.
1. F. J. Gutiérrez Ortiz, et al., “Ollero Autothermal Reforming of Glycerol with Supercritical Water for Maximum Power through a Turbine Plus a Fuel Cell”, Energy Fuels, 2013,27, 576−587
2. A. A. Galkin and V. V. Lunin, Subcritical and supercritical water: a universal medium for chemical reactions, Russian Chem. Rev. 74 (2005) 21-35; G. Brunner, Near critical, supercritical water. Part I. Hydrolytic and hydrothermal processes, J. Supercrit. Fluids 47 (2009) 373-381; G. Brunner, Near, supercritical water. Part II. Oxidative processes, J. Supercrit. Fluids 47 (2009) 382-390
3. Ken Yoshida, et al. “Density effect on infrared spectrum for supercritical water in the low- and medium-density region studied by molecular dynamics simulation” J. Chem. Phys., 2012 , 137, 194506
4. J. Michael Hollas, 4th ed. 2004 Modern Spectroscopy, Chichester ; Hoboken, NJ : J. Wiley
5. T. Tassaing et al “On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data” J. Chem. Phys., 2010, 133, 034103
6. Tamar Schlick, 2002 Molecular modeling and simulation : an interdisciplinary guide, New York : Springer
7. I. N. Levine, Quantum Chemistry, 7th Edition. 2013.
8. E. G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics 2nd ed. 2011.
9. D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods." Math. Proc. Camb. Philos. Soc. 1928, 27,89.
10. A. R. Leach, Molecular Modelling. Principles and Applications 2nd ed. 2001
11. R. G. Parr and W. Yang, "Density-Functional Theory of the Electronic Structure of Molecules." Annu. Rev. Phys. Chem. 1995, 46, 701
12. W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects." Phys. Rev. 1965, 140, A1133
13. A. Castro, et al., "Propagators for the time-dependent Kohn–Sham equations" J. Chem. Phys. 2004, 121, 3425.
14. A. D. Becke, "Density-functional thermochemistry. III. The role of exact exchange", J. Chem. Phys. 1993, 98, 5648-5652.
15. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields", J. Phys. Chem. 1994, 98, 11623–11627.
16. K. Kim, K. D. Jordan, "Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer", J. Phys. Chem. 1994, 98, 10089–10094.
17. Alder, B. J.; Wainwright, T. E. "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys.1959, 31 (2), 459
18. Rahman, A. "Correlations in the Motion of Atoms in Liquid Argon". Physical Review ,1964,136 (2A),A405–A411
19. Alexander Heinecke , Supercomputing for Molecular Dynamics Simulations, 2015, Publishing : Imprint: Springer
20. Berendsen, H. J. C., et al. "Molecular-Dynamics with Coupling to an External Bath". Journal of Chemical Physics, 1984. 81 (8): 3684–3690
21. Morishita, T., "Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath". The Journal of Chemical Physics, 2000, 113: 2976–2982
22. M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford university press: New York, 1991
23. Nosé, S. "A unified formulation of the constant temperature molecular-dynamics methods". Journal of Chemical Physics, 1984, 81 (1): 511–519
24. Hoover, William G. "Canonical dynamics: Equilibrium phase-space distributions". Phys. Rev. A (American Physical Society), 1985, 31 (3): 1695–1697
25. Thijssen, J. M.. Computational Physics (2nd ed.), 2007, Cambridge University Press. pp. 226–231
26. P.H. H¨unenberger, “Thermostat algorithms for molecular dynamics simulations”, Adv. Polymer. Sci., 2005, 173, 105-149 .
27. Russell DeVane, et al. “A time correlation function theory of two-dimensional infrared spectroscopy with applications to liquid water” J. Chem. Phys., 2004, 121, 3688
28. Martin Thomas, et al. “Computing vibrational spectra from ab initio molecular dynamics”, Phys. Chem. Chem. Phys., 2013,15, 6608-6622
29. C. N. Banwell, E. M. McCash Fundamentals of Molecular Spectroscopy, 4th ed., 1994, London ; New York : McGraw-Hill
30. Frenkel, Daan; Smit, Berend Understanding molecular simulation from algorithms to applications (2nd ed.). 2002, San Diego: Academic Press
31. Soohaeng Yoo, Sotiris S. Xantheas “Communication: The effect of dispersion corrections on the melting temperature of liquid water” J. Chem. Phys., 2011, 134, 121105
32. Teemu Salmi and et al., “Calculation of the O-H Stretching Vibrational Overtone Spectrum of the Water Dimer”, J. Phys. Chem. A 2008, 112, 6305–6312
33. A. G. Kalinichev, J. D. Bass, “Hydrogen Bonding in Supercritical Water. 2. Computer Simulations”, J. Phys. Chem. A 1997, 101, 9720-9727
34. Ming-Kang Tsai, Karol Kowalski and et al., “Signature OH Absorption Spectrum from Cluster Models of Solvation: A Solvent-to-Solute Charge Transfer State”, J. Phys. Chem. A 2007, 111, 10478-10482
35. Hiroshi Sakuma and et al. “Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study”, J. Chem. Phys., 2013, 138, 134506
36. KALINICHEV, Andrey G. “Molecular simulations of liquid and supercritical water: Thermodynamics, structure, and hydrogen bonding.” Reviews in Mineralogy and Geochemistry, 2001, 42.1: 83-129.
37. Y. Maréchal, “The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data” J. Mol. Structure. 2011, 1004, 146-155
38. C. W. Haigh “Moseley's Work on X-Rays and Atomic Number” J. Chem. Educ., 1995, 72 (11), p 1012