簡易檢索 / 詳目顯示

研究生: 林昕弘
LIN, Hsin-Hung
論文名稱: 石墨烯與氮化硼複合奈米機油應用於機車之性能研究
The Study of Using Graphene and Boron Nitride Hybrid Nano-Engine Oil on Performance of Motorcycle Engine
指導教授: 呂有豐
Lue, Yeou-Feng
口試委員: 鄧敦平
Teng, Tun-Ping
莫懷恩
Mo, Huai-En
呂有豐
LUE, Yeou-Feng
口試日期: 2023/07/20
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 複合奈米機油能源效率汙染物排放協同效應
英文關鍵詞: Nano-fluids, Energy efficiency, Pollutant emissions, Synergy
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301105
論文種類: 學術論文
相關次數: 點閱:150下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用親油性奈米石墨烯(Gr)搭配奈米氮化硼(BN)添加入SAE 10W-40機油中,製備成各式重量百分濃度之石墨烯與氮化硼複合奈米機油(GBHNEO),因研究規劃使其總重量百分濃度不變皆為0.03 wt.%,接續進行基礎量測及實車實驗,目的為探討GBHNEO(編號1至4)、純奈米Gr機油及原廠機油三項油品,於沉降、磨潤、黏度、熱傳導及比熱等五項基礎量測中提升多少助益;以及實車實驗中能源效率、廢氣污染物及粒狀污染物排放之影響。
    研究結果證實因協同效應之影響,奈米Gr及奈米BN兩者材料之搭配使用,製備成GBHNEO後,相較原廠機油亦或是純奈米Gr 機油(Gr 0.03 wt.%),展現出更佳之基礎特性。五項基礎量測結果得知,沉降試驗顯示,編號1(Gr 0.006 wt.% + BN 0.024 wt.%)保有最為優異之抗沉降;磨潤試驗顯示,編號2(Gr 0.012 wt.% + BN 0.018 wt.%)相較於基準值原廠機油改善率最佳達25 %;黏度試驗顯示,以編號2於規劃之50 °C及70 °C兩溫度階段展現最為優異;熱傳導係數試驗顯示,編號2相較於基準值原廠機油改善率提升2 %;比熱試驗顯示,編號4(Gr 0.024 wt.% + BN 0.006 wt.%)相較基準值原廠機油提升35.5 %。最終,五項基礎量測指標中,得出初步結論為各式濃度比例之複合奈米機油,其展現皆勝過原廠機油亦或是純奈米Gr機油。
    於基礎量測中評選最佳濃度比例編號2投入實車實驗中,對其用於實車上之性能展現進行探究,發現編號2於ECE-40及定速行車型態模擬中,皆展現相較原廠機油更佳之能源效率,平均提升達8.58 %。引擎燃燒後產生之廢氣汙染物,除平路行車型態模擬中 CO2增加7.43 %,其餘皆呈現下降之趨勢。行車型態模擬中;粒狀汙染物(particulate matter, PM)排放於ECE-40、定速、平路及爬坡行車型態模擬中,則依序有10 %、10 %、18 %及6.5 %之減少改善。

    In this study, lipophilic Graphene(Gr)and nano boron nitride(BN)were added to SAE 10W-40 engine oil to prepare Graphene and Boron Nitride-Engine Oil(GBHNEO). For the purpose of research planning, to maintain a consistent total weight percentage concentration of 0.03 wt.% for all types of GBHNEO. Basic measurements and simulation of road experiment were conducted to investigate the benefits of GBHNEO(No. 1 to No. 4), nano lubricant, and original engine oil in terms of sedimentation, tribology, viscosity, thermal conductivity, and specific heat, furthermore, the impact on energy efficiency, exhaust pollutants, and particulate emissions during real vehicle tests will be assessed.
    The research results confirmed that due to the influence of the synergistic effect, the combination of nano Gr and nano BN materials, after being prepared into GBHNEO, showed better basic characteristics than the original engine oil or pure nano Gr engine oil(Gr 0.03 wt.%).
    According to the results of five basic measurements, the sedimentation test shows that No. 1 (Gr 0.006 wt.% + BN 0.024 wt.%)has the most excellent anti-settling performance. The lubrication test shows that nano No. 2 (Gr 0.012 wt.% + BN 0.018 wt.%)exhibits the best improvement rate of 25 % compared to the reference value of the original engine oil. The viscosity test demonstrates that No. 2 exhibits excellent performance at the planned temperatures of 50 °C and 70 °C. The thermal conductivity test shows a 2 % improvement rate for nano No. 2 the original engine oil. The specific heat test shows that the No. 4 (Gr 0.024 wt.% + BN 0.006 wt.%)is 35.5 % higher than the original engine oil. In conclusion, in terms of the five basic measurements indicators, various concentration ratios of the composite nano engine oil outperform the original manufacturer's oil or pure nano Gr oil.
    Based on the results of the basic measurements, the optimal concentration ratio of No. 2 was put into for further investigation of simulation of road experiment. It was found that No. 2 was more effective than ECE-40 and constant speed simulations, both showed better energy efficiency than original engine oil, with an average increase of 8.58 %. The exhaust pollutants generated after engine combustion showed a downtrend in all simulation except for a 7.43 % increase in CO2 emissions during flat road driving simulation. During the simulation of ECE-40, constant speed, flat road and climbing tests, there are 10 %, 10 %, 18 % and 6.6 % less improvement.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 3 1.4 研究方法 3 1.5 論文架構 5 第二章 文獻探討 7 2.1 燃油機車之奈米機油相關應用 7 2.2 燃油機車汙染物之排放 13 2.3 燃油機車效能及排放檢測方法 14 第三章 研究方法與實驗流程 19 3.1 奈米材料檢測 20 3.2 樣本製備 22 3.3 樣本基礎量測 26 3.4 實車實驗 42 第四章 實驗分析與探討 55 4.1 奈米Gr及奈米BN外形檢測 55 4.2 基礎量測 56 4.3 實車實驗 63 第五章 結論與建議 85 5.1 結論 85 5.2 建議與日後研究 86 參考文獻 89 符號釋義 97

    經濟部工業局,“電動車產業發展推動計畫”,資料取自:https://www.moeaidb.gov.tw/external/ctlr?PRO=executive.ExecutiveInfoView&id=10889&lang=0,2017。
    交通部公路總局,統計查詢網,資料取自:
    https://stat.thb.gov.tw/hb01/webMain.aspx?sys=210&kind=21&type=1&funid=1110009&rdm=jriWp6ci,2023。
    行政院環境保護署空保處,“環保署澄清2030年淘汰全部燃油車錯誤說法”,資料取自:
    https://enews.epa.gov.tw/Page/894720A1EB490390/a05bb98e-961f-4160-abe6-d3db725a1a11,2018。
    衛生福利部統計處,死因統計,資料取自:
    https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y110.html,2023。
    S. Manzetti and O. Andersen, “Biochemical and physiological effects from exhaust emissions. A review of the relevant literature”, Pathophysiology, vol. 285–293, 23, 2016.
    J. de la Fuente, O. Armas, S. Barroso-Arévalo, C. Gortázar, T. García-Seco d, A. Buendía-Andrés, F. Villanueva, J. A. Soriano, L. Mazuecos, R. Vaz-Rodrigues, R. García-Contreras, A. García, J. Monsalve-Serrano, L. Domínguez and J. Manuel Sánchez-Vizcaíno, “Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels”, Science of the Total Environment , vol. 844, 157241, 2022.
    X. Bai, H. Chen and B. G. Oliver, “The health effects of traffic-related air pollution: A review focused the health effects of going Green”, Chemosphere, vol. 289, 133082, 2022.
    M. H. Esfe, A. A. A. Arani, S. Esfandeh and M. Afrand, “ Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy”, Energy, vol. 170, pp. 228-238, 2019.
    P. K. Devan, S. Gopinath, K. Rajesh and S. Madhu, “Improving the characteristics of engine oil using nanofluid as coolant in combat vehicles”, Materials Today: Proceedings, vol. 22, pp. 1130–1134, 2020.
    M. Hatami, M. Hasanpour and D. Jing, “Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants”, Journal of Molecular Liquids, vol. 319, 114156, 2020.
    N. Ranjan, M. S. Lal, M. Kamaraj and S. Ramaprabhu, “Tribological study of iron infused carbon tubes additive in gearbox, engine, and vegetable-based lubricants”, Tribology International, vol. 171, 107538,2022.
    M. Yi, J. Qiu and W. Xu, “Tribological performance of ultrathin MoS2 nanosheets in formulated engine oil and possible friction mechanism at elevated temperatures”, Tribology International, vol. 167, 107426,2022.
    L. Ben Said, L. Kolsi1, K. Ghachem, M. Almeshaal and C. Maatki, “Advancement of nanofuids in automotive applications during the last few years¬-a comprehensive review”, Journal of Thermal Analysis and Calorimetry, vol. 147, pp. 7603–7630, 2022.
    W. Dai, B. Kheireddin, H. Gao and H. Liang, “Roles of nanoparticles in oil lubrication”, Tribology International, vol. 102, pp. 88-89, 2016.
    A. K. Rasheed, M. Khalid, A. Javeed, W. Rashmi, T.C.S.M. Gupta, and A. Chan, “Heat transfer and tribological performance of Graphene nanolubricant in an internal combustion engine”, Tribology International, vol. 103, pp. 504–515, 2016.
    L. Wu, L. Gu and R. Jian, “Lubrication mechanism of Graphene nanoplates as oil additives for ceramics/steel sliding components”, Ceramics International, vol. 47, pp. 16935–16942, 2021.
    P. Tambe, A. Sharma, H. Kulkarni and B. Panda, “Solvent assisted dispersion of Graphene and its PVA nanocomposites. coating: Processing and characterization”, Materials Today: Proceedings, vol. 56, pp. 1383–1390, 2022.
    Y. J. Min, C. L. Kim and D. E. Kim, “Tribological properties of the hierarchically structured Graphene oxide composite coatings reinforced with polyvinyl alcohol”, Wear, vol. 490-491, 204212, 2022.
    S. S. Sainudeen, A. Joseph, M. Joseph and V. Sajith, “Heat transfer phenomena of copper-Graphene nanocomposite coated aluminium heat spreaders: An interferometric study”, Applied Thermal Engineering, vol. 212, 118545, 2022.
    A. Shibata, K. Fujimoto and S. Torii, “Heat transfer enhancement of Graphene nanofluid manufactured from Graphite sheet”, Materials Today: Proceedings, vol. 66, pp. 1852–1857, 2022.
    G. Wen, X. Wen, P. Bai, Y. Meng, L. Ma and Y. Tian, “Effect of mixing procedure of oleic acid and BN nanoparticles as additives on lubricant performance of PAO8”, Tribology International, vol. 175, 107842, 2022.
    T. Akbiyik, N. Kahraman and T. Taner, “Investigation of the effect of boron additive to lubricating oil on engine performance, exhaust, and emissions”, Fuel, vol. 312, 122931, 2022.
    N. Thachnatharen, M. Khalid, A. Arulraj and N. Sridewi, “Tribological performance of hexagonal boron nitride (hBN) as nano-additives in military Grade diesel engine oil”, Materials Today: Proceedings, vol. 50, pp. 70–73, 2022.
    J. M. L. del Río, E. R. López and J. Fernández, “Tribological properties of Graphene nanoplatelets or boron nitride nanoparticles as additives of a polyalphaolefin base oil”, Journal of Molecular Liquids, vol. 333, 115911,2021.
    H. Chen, G. Xiao, Z. Chen, M. Yi, J. Zhang, Z. Li and C. Xu, “Hexagonal boron nitride (h-BN) nanosheets as lubricant additive to 5CB liquid crystal for friction and wear reduction”, Materials Letters, vol. 307, 131007, 2022.
    X. Li, P. Qi, Q. Liu and G. Dong, “Improving tribological behaviors of gallium-based liquid metal by h-BN nano-additive”, Wear, vol. 484-485, 203852, 2021.
    J. Patel, A. Soni, D. P. Barai and B. A. Bhanvase, “A minireview on nanofluids for automotive applications: Current status and
    future perspectives”, Applied Thermal Engineering, vol.219, 119428, 2023.
    D. Jiao, S. Zheng, Y. Wang, R. Guan and B. Cao, “The tribology properties of alumina/silica composite nanoparticles as lubricant additives”, Applied Surface Science, vol. 257, pp.5720–5725, 2011.
    M. K. A. Ali, H. Xianjun, L. Mai and C. Bicheng, Richard Fiifi Turkson, Cai Qingping, “Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives”, Wear, vol. 364-365, pp. 270–281, 2016.
    H. Jiang, X. Hou, K. D. Dearn, D. Su, M. K. A. Ali, “Thermal stability enhancement mechanism of engine oil using hybrid MoS2/h-BN nano-additives with ionic liquid modification”, Advanced Powder Technology, vol. 32, pp. 4658–4669, 2021.
    Q. Yu, X. Hou, L. Zhang, H. Jiang, Y. Ma and M. K. A. Ali, “Elaboration of thermophysical performance enhancement mechanism of functionalized boron nitride/Graphite hybrid nanofluids”, Advanced Powder Technology, vol. 34 104047, 2023.
    S. Kumar and R. Kumar, “Tribological characteristics of synthesized hybrid nanofluid composed of CuO and TiO2 nanoparticle additives”, Wear, pp. 518-519 204623, 2023.
    J. M. L. del Río, E. R. López, and J. Fernández, “Synergy between boron nitride or graphene nanoplatelets and tri(butyl)ethylphosphonium diethylphosphate ionic liquid as lubricant additives of triisotridecyltrimellitate oil”, Journal of Molecular Liquids, vol. 301, 112442, 2020.
    U. Szeluga, B. Kumanek & B. Trzebicka, “Synergy in hybrid polymer/nanocarbon composites. A review”, Composites Part A: Applied Science and Manufacturing, vol. 73, pp.204-231, 2015.
    S. Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C. C. M. Ma, S. M. Li & Y. S. Wang, “Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites”, Carbon, vol. 49(3), pp.793-803, 2011.
    Willard W. Pulkrabek(原著)、李冠宗(翻譯)及呂有豐(翻譯),“內燃機”。高立圖書有限公司,1999。
    J. C. Huang and C. Y. Lin, “A Study on Pollutants Emitted from Diesel Engines”, Combustion Quarterly, vol. 12, pp.2-11, 2003.
    M. M. Maricq, “Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: Literature review and future prospects”, Science of the Total Environment, vol. 866, 2023.
    K. Vaaraslahti, J. Keskinen, B. Giechaskiel, A. Solla, T. Murtonen and H. Vesala, “Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles”, Environ. Sci., vol. 39, pp.8497-8504, 2005.
    H. Wihersaari, L. Pirjola, P. Karjalainen, E. Saukko, H. Kuuluvainen, K. Kulmala, J. Keskinen and T. Rönkkö, “Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions”, Environmental Pollution, vol. 265, 2020.
    M. Dehhaghi, H. K. S. Panahi, M. Aghbashlo, S. S. Lam and M. Tabatabaei, “The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts”, Energy, vol. 225, 2021.
    J. Fu, B. Deng, X. Liu, J. Shu, Y. Xu and J. Liu, “The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle”, Energy, vol. 211, 2020.
    S. M. S. Ardebili, H. Solmaz, A. Calam and D. İpci, “Modelling of performance, emission, and combustion of an HCCI engine fueled with fusel oil-diethylether fuel blends as a renewable fuel”, Fuel, vol. 290, 2021.
    行政院經濟部標準檢驗局,標準總號:CNS3105,資料取自:https://www.cnsonline.com.tw/,2009年。
    行政院經濟部能源局,車輛油耗指南,資料取自:https://auto.itri.org.tw/index.aspx,2019年。
    行政院環境保護署,主管法規查詢系統-機車廢氣排放污染測試方法及程序,資料取自:https://oaout.epa.gov.tw/law/index.aspx,2019年。

    下載圖示
    QR CODE