簡易檢索 / 詳目顯示

研究生: 盧珍妏
Lu, Chen-Wen
論文名稱: 以氧化鐵奈米粒子標記人類間質幹細胞誘導成為類神經細胞的追蹤表現及應用
Characterization of an iron oxide nanoparticle labelling and MRI-based protocol for inducing human mesenchymal stem cells into neural-like cells
指導教授: 吳忠信
Wu, Chung-Hsin
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: 氧化鐵奈米粒子核磁共振成像間質幹細胞類神經細胞動作電位
英文關鍵詞: iron oxide nanoparticle (ION), magnetic resonance imaging (MRI), mesenchymal stem cells (MSCs), neural-like cells (NCs), action potential
DOI URL: https://doi.org/10.6345/NTNU202202909
論文種類: 學術論文
相關次數: 點閱:199下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是以開發氧化鐵奈米粒子(ION)標記人類間質幹細胞 (MSCs)誘導體外分化成為類神經細胞 (NCs) 的應用以及在核磁共振成像(MRI)之追蹤表現。Ferucarbotran,一種臨床所使用的氧化鐵奈米粒子,此種陰性顯影劑可以在核磁共振成像下清楚的看見,因此被用來標記細胞內的追蹤觀察。本研究透過光學顯微鏡下發現體外培養的類神經細胞具有神經細胞的型態以及量測動作電位的功能表現。在光學顯微鏡下觀察到細胞呈現軸突樣的結構型態。這些類神經細胞比未分化的間質幹細胞表現較多頻率的動作電位。以氧化鐵奈米粒子標記對間質幹細胞的形態、功能和分化能力沒有影響。我們的結論發現,以體外誘導人類間質幹細胞 (MSCs)分化成的類神經細胞 (NCs) 表現較多頻率的動作電位,或許這些體外誘導生成的類神經細胞可以用於替代損傷的神經元。

    The aim of the current study was to develop an iron oxide nanoparticle (ION) labelling and magnetic resonance imaging (MRI)-based protocol to allow visualization of the differentiation process of mesenchymal stem cells (MSCs) into neural-like cells (NCs) in vitro. Ferucarbotran, a clinically available ION, which can be visualized under MRI, is used for tracking cells implanted in vivo. The NCs were verified morphologically and histologically by light microscopy, and their functions were verified by measuring their action potentials. Conformational conversion of axon-like structures was observed under light microscopy. These NCs exhibited frequent, active action potentials compared with cells that did not undergo neural differentiation. The labelling of ION had no influence on the morphological and functional differentiation capacity of the MSCs. We conclude that the MSCs that were differentiated into NCs exhibited in vitro activity potential firing and may be used to replace damaged neurons.

    TABLE OF CONTENTS I LIST OF FIGURES IV 中文摘要 V ABSTRACT VI CHAPTER 1 INTRODUCTION 1 1.1 HMSCs 2 1.2 Iron oxide nanoparticles (IONs) 3 1.3 Research aims 4 CHAPTER 2 MATERIALS AND METHODS 5 2.1 Cell culture (1) Human mesenchymal stem cell culture (2) Neurogenic differentiation of human mesenchymal stem cells (3) ION labelling 6 2.2 Morphological analysis (1) Transmission electron microscopy (2) Co-staining with Prussian Blue and phosphotungstic acid haematoxylin (PTAH) 7 2.3 Reverse transcription polymerase chain reaction (RT-PCR) 8 2.4 Western blotting 9 2.5 Immunofluorescence staining 10 2.6 Flow cytometry analysis of neural markers 11 2.7 Electrophysiological recording 11 2.8 Flow cytometry detection of ION particle uptake 12 2.9 Magnetic resonance imaging (MRI) 12 2.10 Intracellular iron content determination 13 2.11 Viability assay 13 2.12 Reactive oxygen species measurements 14 2.13 Mitochondria membrane potential measurements 14 2.14 Statistical analysis 15 CHAPTER 3 RESULTS 16 3.1 Differentiated human MSCs exhibited neural-like morphology and neuron markers: Directly labelling hMSCs and NCs with ION 17 3.2 Electrophysiological function 18 3.3 In vitro determination of ION uptake by MRI, inductively coupled plasma mass spectrometry (ICP-MS) and flow cytometry 19 3.4 Cell behavior 20 CHAPTER 4 DISCUSSION 21 4.1 Cell behavior 22 4.2 Different sizes of supraparamagnetic ION 23 4.3 NPs coating 26 4.4 Iron Content 29 4.5 Neural induction medium (NIM) 29 4.6 NCs 30 4.7 Neural Protein expression 31 4.8 Spontaneous firing frequency 32 CHAPTER 5 CONCLUSION 34 CHAPTER 6 REFERENCES 36 CHAPTER 7 FIGURES 57 CHAPTER 8 Tables 69 APPENDIX 1: CV of Chen-Wen, Lu i APPENDIX 2: Copy of Published Sci Papers ii FIGURES 57 Figure 1. Comparison of hMSC differentiation capacity into NCs with or without (w/o) ION 58 Figure 2. TEM images of ION (Resovist, ferucarbotran) 60 Figure 3. Characterization of neural differentiation markers in hMSCs treated with or without neural induction medium after ION labelling 61 Figure 4. Action potentials of hMSCs, NCs with or without ION labelling 63 Figure 5. Quantification of iron content after labelling with or without ION before and after induction of neural-like cell differentiation 65 Figure 6. Measuring cell behaviour using three different assays 67 Table 1. Primer sequences used for RT-PCR analysis 69

    1 Chamberlain, J. D. et al. Mortality and longevity after a spinal cord injury: systematic review and meta-analysis. Neuroepidemiology 44, 182-198 (2015).
    2 De Temmerman, M.-L. et al. Magnetic layer-by-layer coated particles for efficient MRI of dendritic cells and mesenchymal stem cells. Nanomedicine 9, 1363-1376 (2014).
    3 Haghbayan, H. et al. The prognostic value of magnetic resonance imaging in moderate and severe traumatic brain injury: a systematic review and meta-analysis protocol. Systematic reviews 5, 10 (2016).
    4 Himmelreich, U. et al. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 48, 112-124 (2009).
    5 Li, X., Zarbin, M. A. et al. Pediatric open globe injury: A review of the literature. J Emerg Trauma Shock 8, 216-223, doi:10.4103/0974-2700.166663 (2015).
    6 Puetzer, J. et al. The effects of cyclic hydrostatic pressure on chondrogenesis and viability of human adipose-and bone marrow-derived mesenchymal stem cells in three-dimensional agarose constructs. Tissue Engineering Part A 19, 299-306 (2012).

    7 Kim, S. S. et al. Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26, 2217-2228, doi:10.1634/stemcells.2008-0108 (2008).
    8 Mohammadi, Z. et al. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells. Iran J Basic Med Sci 18, 259-266 (2015).
    9 Park, B. W. et al. In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 83, 249-259, doi:10.1016/j.diff.2012.02.008 (2012).
    10 Teti, G. et al. Ultrastructural analysis of human bone marrow mesenchymal stem cells during in vitro osteogenesis and chondrogenesis. Microsc Res Tech 75, 596-604, doi:10.1002/jemt.21096 (2012).
    11 Croft, A. P. et al. A. Generation of neuroprogenitor-like cells from adult mammalian bone marrow stromal cells in vitro. Stem Cells Dev 13, 409-420, doi:10.1089/scd.2004.13.409 (2004).
    12 Kim, S. et al. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res 1123, 27-33, doi:10.1016/j.brainres.2006.09.044 (2006).

    13 Croft, A. P. et al. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp Neurol 216, 329-341, doi:10.1016/j.expneurol.2008.12.010 (2009).
    14 Brohlin, M. et al. Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res 64, 41-49, doi:10.1016/j.neures.2009.01.010 (2009).
    15 Novikova, L. N. et al. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 13, 873-887, doi:10.3109/14653249.2011.574116 (2011).
    16 Hermann, A. et al. Neurorestoration in Parkinson's disease by cell replacement and endogenous regeneration. Expert Opin Biol Ther 4, 131-143, doi:10.1517/14712598.4.2.131 (2004).
    17 Suzuki, H. et al. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem Biophys Res Commun 322, 918-922, doi:10.1016/j.bbrc.2004.07.201 (2004).\

    18 Bahat-Stroomza, M. et al. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease. J Mol Neurosci 39, 199-210, doi:10.1007/s12031-008-9166-3 (2009).
    19 Kaka, G. et al. Improvement of spinal contusion model by cotransplanting bone marrow stromal cells (BMSCs) and induced BMSCs into oligodendrocytes-like cells. Journal of neurosurgical sciences (2014).
    20 Christie, K. J. et al. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 6, 70, doi:10.3389/fncel.2012.00070 (2012).
    21 Modo, M. et al. Cellular MR imaging. Mol Imaging 4, 143-164 (2005).
    22 Krukemeyer, M. G. et al. Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver—magnetic nanoparticles in cancer treatment. Journal of Surgical Research 175, 35-43 (2012).
    23 Wei, Y. et al. Biocompatible Low-Retention Superparamagnetic Iron Oxide Nanoclusters as Contrast Agents for Magnetic Resonance Imaging of Liver Tumor. J Biomed Nanotechnol 11, 854-864 (2015).

    24 Naganawa, S. et al. Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging 21, 836-840, doi:10.1002/jmri.20346 (2005).
    25 Kim, T. et al. Effect of superparamagnetic iron oxide on tumor-to-liver contrast at T2*-weighted gradient-echo MRI: comparison between 3.0T and 1.5T MR systems. J Magn Reson Imaging 29, 595-600, doi:10.1002/jmri.21384 (2009).
    26 Chen, R. C. et al. T2-weighted and T1-weighted dynamic superparamagnetic iron oxide (ferucarbotran) enhanced MRI of hepatocellular carcinoma and hyperplastic nodules. J Formos Med Assoc 107, 798-805, doi:10.1016/S0929-6646(08)60193-X (2008).
    27 Chen, F. et al. Hydrothermal synthesis of a highly sensitive T2-weigthed MRI contrast agent: zinc-doped superparamagnetic iron oxide nanocrystals. J Nanosci Nanotechnol 11, 10438-10443 (2011).
    28 Patterson, A. J. et al. H. In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose-response study to statin therapy. NMR Biomed 24, 89-95, doi:10.1002/nbm.1560 (2011).

    29 Chen, C.-C. V. et al. Simple SPION incubation as an efficient intracellular labeling method for tracking neural progenitor cells using MRI. PLoS One 8, e56125 (2013).
    30 Umashankar, A. et al. Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation. International journal of nanomedicine 11, 1731 (2016).
    31 Zeng, G. et al. Human amniotic membrane-derived mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles: the effect on neuron-like differentiation in vitro. Molecular and cellular biochemistry 357, 331 (2011).
    32 Zhang, R. et al. In vivo tracking of neuronal-like cells by magnetic resonance in rabbit models of spinal cord injury. Neural regeneration research 8, 3373 (2013).
    33 Zhang, R. et al.. Efficient In vitro labeling rabbit bone marrow-derived mesenchymal stem cells with SPIO and differentiating into neural-like cells. Molecules and cells 37, 650 (2014).
    34 Barrow, M. et al. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chemical Society Reviews 44, 6733-6748 (2015).

    35 Yocum, G. T. et al. Effect of Human Stem Cells Labeled with Ferumoxides–Poly-l-lysine on Hematologic and Biochemical Measurements in Rats 1. Radiology 235, 547-552 (2005).
    36 Albukhaty, S. et al. In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection. Iranian biomedical journal 17, 71 (2013).
    37 Ke, Y.-q. et al. In vivo magnetic resonance tracking of Feridex-labeled bone marrow-derived neural stem cells after autologous transplantation in rhesus monkey. Journal of neuroscience methods 179, 45-50 (2009).
    38 Hsiao, J. K. et al. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magnetic Resonance in Medicine 58, 717-724 (2007).
    39 Delcroix, G. J.-R. et al. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain research 1255, 18-31 (2009).
    40 Park, K.-S. et al. Improved quantification of islet transplants by magnetic resonance imaging with Resovist. Pancreas 40, 911-919 (2011).

    41 Wei, Y. et al. Biocompatible Low-Retention Superparamagnetic Iron Oxide Nanoclusters as Contrast Agents for Magnetic Resonance Imaging of Liver Tumor. Journal of biomedical nanotechnology 11, 854-864 (2015).
    42 Reimer, P. et al. Clinical results with Resovist: a phase 2 clinical trial. Radiology 195, 489-496 (1995).
    43 Kopp, A. F. et al. MR imaging of the liver with Resovist: safety, efficacy, and pharmacodynamic properties. Radiology 204, 749-756 (1997).
    44 Yang, C. Y. et al. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology. PLoS One 6, e25524, doi:10.1371/journal.pone.0025524 (2011).
    45 Hsiao, J.-K. et al. Cellular behavior change of macrophage after exposure to nanoparticles. Journal of nanoscience and nanotechnology 9, 1388-1393 (2009).
    46 Van Buul, G. M. et al. Ferumoxides-protamine sulfate is more effective than ferucarbotran for cell labeling: implications for clinically applicable cell tracking using MRI. Contrast Media Mol Imaging 4, 230-236, doi:10.1002/cmmi.289 (2009).

    47 Chen, Y. C. et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245, 272-279, doi:10.1016/j.taap.2010.03.011 (2010).
    48 Crabbe, A. et al. Effects of MRI contrast agents on the stem cell phenotype. Cell transplantation 19, 919-936 (2010).
    49 Gao, Q. et al. Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult. Neuroscience 136, 123-134, doi:10.1016/j.neuroscience.2005.06.091 (2005).
    50 Huang, D.-M. et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30, 3645-3651 (2009).
    51 Tran, D. N. et al. Influence of nanoparticles on morphological differentiation of mouse embryonic stem cells. Fertility and sterility 87, 965-970 (2007).

    52 Chen, C.-L. et al. A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging. Molecular Imaging and Biology 13, 825-839 (2011).
    53 Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489-493 (1990).
    54 Boulland, J.-L. et al. Evaluation of intracellular labeling with micron-sized particles of iron oxide (MPIOs) as a general tool for in vitro and in vivo tracking of human stem and progenitor cells. Cell transplantation 21, 1743-1759 (2012).
    55 Imam, S. Z. et al. Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Molecular neurobiology 52, 913 (2015).
    56 Wang, B. et al. Size-Dependent Translocation Pattern, Chemical and Biological Transformation of Nano-and Submicron-Sized Ferric Oxide Particles in the Central Nervous System. Journal of Nanoscience and Nanotechnology 16, 5553-5561 (2016).
    57 Pawelczyk, E. et al. Expression of transferrin receptor and ferritin following ferumoxides–protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR in Biomedicine 19, 581-592 (2006).

    58 Friedrich, R. P. et al. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. International journal of nanomedicine 10, 4185 (2015).
    59 Zhu, J. et al. Tracking neural stem cells in patients with brain trauma. N Engl J Med 2006, 2376-2378 (2006).
    60 Zhang, X. et al. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion. Quant Imaging Med Surg 4, 112-122, doi:10.3978/j.issn.2223-4292.2014.04.06 (2014).
    61 Eglitis, M. A. et al. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proceedings of the National Academy of Sciences 94, 4080-4085 (1997).
    62 Hofstetter, C. P. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences 99, 2199-2204 (2002).
    63 Snyder, E. Y. et al. Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. Journal of neuroscience research 76, 157-168 (2004).

    64 Hermann, A. et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117, 4411-4422, doi:10.1242/jcs.01307 (2004).
    65 Yu, J. M. et al. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem cells and development 17, 463-474 (2008).
    66 Pawelczyk, E. et al. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 19, 581-592, doi:10.1002/nbm.1038 (2006).
    67 Parr, A. M. et al. Fate of transplanted adult neural stem/progenitor cells and bone marrow–derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery. Surgical neurology 70, 600-607 (2008).
    68 Woodbury, D. et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61, 364-370 (2000).
    69 Tsai, Y. et al. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Stem cell research 15, 75-87 (2015).

    70 Bain, G. et al. I. Embryonic stem cells express neuronal properties in vitro. Developmental biology 168, 342-357 (1995).
    71 Morrison, S. J. et al. Regulatory mechanisms in stem cell biology. Cell 88, 287-298 (1997).
    72 Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49 (2002).
    73 Sanchez-Ramos, J. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247-256, doi:10.1006/exnr.2000.7389 (2000).
    74 Ghosh, A. et al. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618-1624 (1994).
    75 Schinstine, M. et al. 5-Azacytidine and BDNF enhance the maturation of neurons derived from EGF-generated neural stem cells. Experimental neurology 144, 315-325 (1997).
    76 Schinstine, M. et al. 5-Azacytidine and BDNF enhance the maturation of neurons derived from EGF-generated neural stem cells. Exp Neurol 144, 315-325, doi:10.1006/exnr.1996.6370 (1997).

    77 Ghosh, A. et al. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618-1623 (1994).
    78 Imai, Y. et al. Cloning of a retinoic acid-induced gene, GT1, in the embryonal carcinoma cell line P19: neuron-specific expression in the mouse brain. Molecular brain research 31, 1-9 (1995).
    79 Thompson, S. et al. Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. Journal of Cell Science 72, 37-64 (1984).
    80 Yokose, T. et al. Establishment and Characterization of a Nerve Cell Line (NC‐HIMT) from HIMT Cells Derived from a Human Ovarian Immature Teratoma with Special Reference to the Induction of Neuron Differentiation by Retinoic Acid. Human cell 17, 59-66 (2004).
    81 Song, M. et al. Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell transplantation 24, 183-190 (2015).
    82 Omori, Y. et al. Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain research 1236, 30-38 (2008).

    83 Hsueh, Y.-Y. et al. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Scientific reports 5, 14985 (2015).
    84 Qiu, X.-C. et al. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem cell research & therapy 6, 105 (2015).
    85 Zaminy, A. et al. Mesenchymal stem cells as an alternative for Schwann cells in rat spinal cord injury. Iranian biomedical journal 17, 113 (2013).
    86 Levy, Y. et al. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease. Cytotherapy 10, 340-352 (2008).
    87 Yang, X. et al. Human mesenchymal stem cells differentiate into neuron-like cells and show SMN protein expression. Zhonghua yi xue za zhi 85, 1125-1128 (2005).
    88 Sasaki, M. et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. Journal of Neuroscience 29, 14932-14941 (2009).

    89 Parr, A. M. et al.Fate of transplanted adult neural stem/progenitor cells and bone marrow-derived mesenchymal stromal cells in the injured adult rat spinal cord and impact on functional recovery. Surg Neurol 70, 600-607; discussion 607, doi:10.1016/j.surneu.2007.09.043 (2008).
    90 Pedram, M. S. et al. Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord 48, 457-463, doi:10.1038/sc.2009.153 (2010).
    91 Mannoji, C. et al. Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp (Wars) 74, 479-488 (2014).
    92 Qiu, X. C. et al. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res Ther 6, 105, doi:10.1186/s13287-015-0100-7 (2015).
    93 Zaminy, A. et al. Mesenchymal stem cells as an alternative for Schwann cells in rat spinal cord injury. Iran Biomed J 17, 113-122 (2013).

    94 Levy, Y. S. et al. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease. Cytotherapy 10, 340-352, doi:10.1080/14653240802021330 (2008).
    95 Yang, X. S. et al.Human mesenchymal stem cells differentiate into neuron-like cells and show SMN protein expression. Zhonghua Yi Xue Za Zhi 85, 1125-1128 (2005).
    96 Sasaki, M. et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29, 14932-14941, doi:10.1523/JNEUROSCI.2769-09.2009 (2009).
    97 Park, H. et al. Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transplant 21, 1629-1640, doi:10.3727/096368912X640556 (2012).
    98 Okolicsanyi, R. K. et al. Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PloS one 10, e0137255 (2015).

    99 Matsui, J. et al. Regeneration and replacement in the vertebrate inner ear. Drug Discov Today 10, 1307-1312, doi:10.1016/S1359-6446(05)03577-4 (2005).
    100 Jang, S. et al. Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf Guinea pigs. Clin Exp Otorhinolaryngol 8, 83-91, doi:10.3342/ceo.2015.8.2.83 (2015).
    101 Ghosh, Z. et al. Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer research 71, 5030-5039 (2011).
    102 Zhang, R. et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. Journal of neuroinflammation 10, 106 (2013).
    103 Park, H.-J. et al. Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell transplantation 21, 1629-1640 (2012).
    104 Zhang, S.-C. et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature biotechnology 19, 1129-1133 (2001).

    105 Mannoji, C. et al. Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice. Acta Neurobiol Exp 74, 479-488 (2014).
    106 Levy, Y. et al. Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease. Cytotherapy 10, 340-352 (2008).
    107 Matsui, J. et al. Regeneration and replacement in the vertebrate inner ear. Drug discovery today 10, 1307-1312 (2005).
    108 Suzuki, H. et al. Resovist-Enhanced MRI for Preoperative Assessment of Colorectal Hepatic Metastases. Case reports in gastroenterology 2, 509-516 (2008).
    109 Jang, S. et al. Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf Guinea pigs. Clinical and experimental otorhinolaryngology 8, 83 (2015).
    110 Reubinoff, B. E. et al. Neural progenitors from human embryonic stem cells. Nature biotechnology 19, 1134-1140 (2001).

    111 Odawara, A. et al. Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochemical and biophysical research communications 443, 1176-1181 (2014).

    下載圖示
    QR CODE