簡易檢索 / 詳目顯示

研究生: 謝和秦
Hseih, He-Chin
論文名稱: 氧化亞銅/奈米碳管之陰極複合材料應用於鋰二氧化碳電池陰極觸媒
Cu2O / CNT Functioned as a cathode for Lithium-carbon-dioxide Battery
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 67
中文關鍵詞: 鋰二氧化碳電池氧化亞銅奈米碳管陰極光催化
英文關鍵詞: Lithium-carbon-dioxide battery, Cuprous oxide, Carbon nanotube, Cathode, Photocatalysis
DOI URL: http://doi.org/10.6345/NTNU201900585
論文種類: 學術論文
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長久以來,人類以燃燒石化燃料為主要之能源來源,除石化燃料枯竭危機外,持續燃燒石化燃料將導致全球二氧化碳排放量攀升,伴隨產生之溫室效應與氣候異常更為一大隱憂。鑒於環保意識抬頭,全球大量汽車經由內燃引擎燃燒汽油,驅動過程中持續排放二氧化碳等有害氣體汙染地球,故將電池作為乾淨動力來源之電動車被大力推廣與研發。傳統之水銀電池存在汞汙染問題,又鉛酸電池與鋰離子電池之能量密度不足以為電動車所使用。因此鋰二氧化碳電池為最具開發潛力之電池,具下述優點:1.鋰二氧化碳電池之陰極反應物為二氧化碳,其為當今主要之溫室氣體,若加以利用可達節能減碳之效益與2.根據計算分析,鋰二氧化碳電池具與石油相當之高能量密度,分別為11500 Wh Kg-1與13000 Wh Kg-1,基於以上原因,鋰二氧化碳電池存在機會成為電動車之電池,已成為各方研究之對象。然而,目前鋰二氧化碳電池仍存在許多未解決之問題,例如:高過電壓與穩定性差。
    本研究乃藉菱形十二面體之氧化亞銅,其特殊之(110)晶面將助於光電子與光電洞導出至陰極上,又其適當之能帶結構可對碳酸鋰之分解達到光催化之效用,配合奈米碳管之高導電性、多孔狀利於氣體擴散與碳酸鋰儲存等優點,將可有效降低鋰二氧化碳電池之過電位至0.4 V。

    For a long time, human beings have burned fossil fuels as the main source of energy for a long time. In addition to the depletion of fossil fuels, the continued burning of fossil fuels will lead to an increase in global carbon dioxide emissions, and the resulting greenhouse effect and climate anomalies are a major concern. In view of the rising awareness of environmental protection, a large number of cars in the world burn gasoline through internal combustion engines and continue to emit harmful gases such as carbon dioxide in the driving process to pollute the earth. Therefore, electric vehicles with batteries as a clean power source have been vigorously promoted, researched and developed. Traditional mercury batteries have mercury pollution problems, and the energy densities of lead-acid batteries and lithium-ion batteries are not enough for electric vehicles. Therefore, the lithium carbon dioxide battery is the most promising battery with the following advantages. First, cathode reactant of the lithium carbon dioxide battery is carbon dioxide, which is the main greenhouse gas nowadays and can be used to save energy and reduce carbon. Second, according to the calculation and analysis, lithium-carbon dioxide batteries have high energy density comparable to gasoline, which are 12000 Wh Kg-1 and 11500 Wh Kg-1 respectively. Based on the above reasons, lithium-carbon dioxide batteries have the opportunity to become batteries for electric vehicles, which has become the object of research. However, there are still many unresolved problems in current lithium carbon dioxide batteries, such as high overvoltage and poor stability.
    In this study, the rhombic dodecahedron cuprous oxide is used. Its special (110) crystal plane will facilitate the derivation of photoelectrons and photoelectrodes to the cathode, and its proper band structure can decompose lithium carbonate to photocatalysis. The utility model has the advantages of the high conductivity of porous carbon nanotubes, favorable gas diffusion, and storage of lithium carbonate, and can effectively reduce the overpotential of the lithium carbon dioxide battery.

    目錄 致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 電池 2 1.2鋰離子電池 5 1.3鋰空氣電池 6 1.4電池種類 13 1.5常用之鋰二氧化碳陰極觸媒材料 17 1.6研究動機與目的 30 第二章 實驗步驟與儀器分析原理 32 2.1 氧化亞銅奈米粒子/奈米碳管複合材料之合成 32 2.2材料結構鑑定 36 第三章 結果與討論 43 3.1氧化亞銅奈米粒子之結構鑑定 43 3.2氧化亞銅/奈米碳管複合材料之電性分析 46 3.3鋰二氧化碳電池之產物分析 59 第四章 結論 64 參考文獻 65

    (1) Liu, Y.; Wang, R.; Lyu, Y.; Li, H.; Chen, L.; Rechargeable Li/CO2–O2 (2:1) Battery and Li/CO2 Battery. Energy Environ. Sci. 2014, 7, 677-681.
    (2) da Silva, P. S.; Maciel, J. M.; Wohnrath, K.; Spinelli, A.; Garcia, J. R., Electrodeposition of Alloys Coatings from Electrolytic Baths Prepared by Recovery of Exhausted Batteries for Corrosion Protection. IntechOpen: 2013; p 210-230.
    (3) Liu, C.; Neale, Z. G.; Cao, G.; Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19, 109-123.
    (4) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W.; Lithium− air battery Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.
    (5) Li, L.; Chang, Z.; Zhang, X.; Recent Progress on the Development of Metal‐Air Batteries. Adv. Sustainable Syst. 2017, 1, 1700036.
    (6) Takechi, K.; Shiga, T.; Asaoka, T.; A Li–O2/CO2 Battery. Chem Commun. 2011, 47, 3463-3465.
    (7) Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y.; Xie, Z.; Wei, J.; Zhou, Z.; Rechargeable Li–CO2 Batteries with Carbon Nanotubes as Air Cathodes. Chem Commun. 2015, 51, 14636-14639.
    (8) Yang, S.; He, P.; Zhou, H.; Exploring the Electrochemical Reaction Mechanism of Carbonate Oxidation in Li–air/CO2 Battery through Tracing Missing Oxygen. Energy Environ. Sci. 2016, 9, 1650-1654.
    (9) Wang, L.; Dai, W.; Ma, L.; Gong, L.; Lyu, Z.; Zhou, Y.; Liu, J.; Lin, M.; Lai, M.; Peng, Z.; Monodispersed Ru Nanoparticles Functionalized Graphene Nanosheets as Efficient Cathode Catalysts for O2-Assisted Li–CO2 Battery. ACS Omega 2017, 2, 9280-9286.
    (10) Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C. Z.; Tarascon, J. M.; Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li–O2/CO2 Batteries by Controlling the Superoxide Intermediate. J. Phys. Chem. Lett. 2016, 8, 214-222.
    (11) Tan, P.; Jiang, H.; Zhu, X.; An, L.; Jung, C.; Wu, M.; Shi, L.; Shyy, W.; Zhao, T.; Advances and Challenges in Lithium-air Batteries. Appl. Energ. 2017, 204, 780-806.
    (12) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G.; The Role of LiO2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li–O2 Batteries. Nat. Chem. 2014, 6, 1091.
    (13) Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D.; Enhancing Electrochemical Intermediate Solvation through Electrolyte Anion Selection to Increase Nonaqueous Li–O2 Battery Capacity. Proc. Natl. Acad. Sci. 2015, 112, 9293-9298.
    (14) Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G.; Advances in Understanding Mechanisms Underpinning Lithium–air Batteries. Nat. Energy 2016, 1, 16128.
    (15) Imanishi, N.; Yamamoto, O.; Rechargeable Lithium–air Batteries Characteristics and Prospects. Mater. Today 2014, 17, 24-30.
    (16) Liu, Y.; Li, B.; Kitaura, H.; Zhang, X.; Han, M.; He, P.; Zhou, H.; Fabrication and Performance of All-Solid-State Li–Air Battery with SWCNTs/LAGP Cathode. ACS Appl. Mater. Interfaces 2015, 7, 17307-17310.
    (17) Kim, D. Y.; Jin, X.; Lee, C. H.; Kim, D. W.; Suk, J.; Shon, J. K.; Kim, J. M.; Kang, Y.; Improved Electrochemical Performance of Ordered Mesoporous Carbon by Incorporating Macropores for Li‒O2 Battery Cathode. Carbon 2018, 133, 118-126.
    (18) Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L.; Highly Rechargeable Lithium‐CO2 Batteries with a Boron‐and-nitrogen‐codoped Holey‐graphene Cathode. Angew. Chem. Int. Ed. 2017, 56, 6970-6974.
    (19) Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H.; A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972-978.
    (20) Wang, C.; Zhang, Q.; Zhang, X.; Wang, X. G.; Xie, Z.; Zhou, Z.; Fabricating Ir/C Nanofiber Networks as Free‐standing Air Cathodes for Rechargeable Li‐CO2 Batteries. Small 2018, 14, 1800641.
    (21) Zhang, X.; Wang, C.; Li, H.; Wang, X.; Chen, Y.; Xie, Z.; Zhou, Z.; High Performance Li–CO2 Batteries with NiO–CNT Cathodes. J. Mater. Chem. A 2018, 6, 2792-2796.
    (22) Hou, Y.; Wang, J.; Liu, L.; Liu, Y.; Chou, S.; Shi, D.; Liu, H.; Wu, Y.; Zhang, W.; Chen, J.; Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries. Adv. Funct. Mater. 2017, 27, 1700564.
    (23) Li, Z.; Ganapathy, S.; Xu, Y.; Zhu, Q.; Chen, W.; Kochetkov, I.; George, C.; Nazar, L. F.; Wagemaker, M.; Fe2O3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic Li-O2 Batteries. Adv. Energy Mater. 2018, 8, 1703513.
    (24) Ma, W.; Lu, S.; Lei, X.; Liu, X.; Ding, Y.; Porous Mn2O3 Cathode for Highly Durable Li–CO2 Batteries. J. Mater. Chem. A 2018, 6, 20829-20835.
    (25) Zhao, G.; Zhang, L.; Wang, B.; Sun, K.; Cuprous Oxide as Cathode Catalysts of Lithium Oxygen Batteries. Electrochim. Acta 2015, 184, 117-123.
    (26) Ma, S.; Liu, Q.; Lei, D.; Guo, X.; Li, S.; Li, Z.; A Powerful Li-O2 Battery Based on An Efficient Hollow Cu2O Cathode Catalyst with Tailored Crystal Plane. Electrochim. Acta 2018, 260, 31-39.
    (27) Qiu, X. Y.; Liu, S. J.; Xu, D. Z.; Yolk-shell Structured Cu2O as A High-performance Cathode Catalyst for the Rechargeable Li-O2 Batteries. J. Mater. Sci. 2018, 53, 1318-1325.
    (28) Liu, Y.; Li, N.; Liao, K.; Li, Q.; Ishida, M.; Zhou, H.; Lowering the Charge Voltage of Li–O2 Batteries via An Unmediated Photoelectrochemical Oxidation Approach. J. Mater. Chem. A 2016, 4, 12411-12415.
    (29) Gong, H.; Wang, T.; Xue, H.; Fan, X.; Gao, B.; Zhang, H.; Shi, L.; He, J.; Ye, J.; Photo-enhanced Lithium Oxygen Batteries with Defective Titanium Oxide as Both Photo-anode and Air Electrode. Energy Storage Mater. 2018, 13, 49-56.
    (30) Veeramani, V.; Chen, Y. H.; Wang, H. C.; Hung, T. F.; Chang, W. S.; Wei, D. H.; Hu, S. F.; Liu, R. S.; CdSe/ZnS QD@ CNT Nanocomposite Photocathode for Improvement on Charge Overpotential in Photoelectrochemical Li-O2 Batteries. Chem. Eng. Sci. 2018, 349, 235-240.
    (31) Chu, C. Y.; Huang, M. H.; Facet-dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116-15123.

    下載圖示
    QR CODE