研究生: |
賴禹丞 Lai, Yu-Cheng |
---|---|
論文名稱: |
高功率脈衝磁控濺鍍二氧化鋯介電層於金氧半電容之性質研究 Characterization of ZrO2 dielectric layer by high power impulse magnetron sputtering for MOS applications |
指導教授: |
劉傳璽
Liu, Chuan-Hsi |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 高功率脈衝磁控濺鍍 、二氧化鋯 、奈米壓痕試驗機 、電容 |
英文關鍵詞: | HIPIMS, ZrO2, Nano indenter, Capacitance |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高功率脈衝磁控濺鍍 (High Power Impulse Magnetron Sputtering, HIPIMS)是目前最新的濺鍍製膜技術,與傳統的直流磁控濺鍍 (Dielectric Current Magnetron Sputtering, DCMS)相比,HIPIMS有著在極短的脈衝時間內讓靶材單位功率密度達到數 kW/cm2以上的特性,另外還能產生出很高的電漿密度並有效增加靶材金屬離化率,生成的薄膜也有著較好的品質,因為這些特質,本研究將使用 HIPIMS與 DCMS系統分別沉積 MOS電容中的介電層。
二氧化鋯是一具有高介電係數 (約在19-25之間)、寬能隙寬能隙 (5.1-7.8 eV)及高熱穩定度之特性的材料,因此選擇二氧化鋯去做為試片的介電層,最後再鍍上TiN作為金屬層,在 800度的快速熱退火之後,觀察該電容器的物性。接著,對試片電容沉積鋁電極以量測電性,因此本研究的試片結構為Al/ TiN/ ZrO2/ p-Si。實驗結果顯示HIPIMS技術優秀的離子解離率可以使ZrO2的結構更加完整、內部的缺陷也比較少,因此有比較好的電容值表現。物性方面,HIPIMS所濺鍍出的電容一樣會形成更加緻密的薄膜進而提高其機械性質,在硬度值有所增加,有效的改善薄膜硬度。
最後,綜合作比較,可以發現雖然電容值與硬度兩者的改變差異沒有完全的相同,但是在整個趨勢上是相當近似的,因此從量測介電層的硬度就可以推測出電容值的走向,而電容值的改變也可以進一步推斷出IDsat的趨勢,如此就可以於完成製作 MOSFET電晶體前,提前達到製程優化。
High Power Impulse Magnetron Sputtering (HIPIMS) is the latest coating technology. Compared with the traditional Dielectric Current Magnetron Sputtering (DCMS), it was characterized for a very short pulse width making peak power density to several kW/cm2. In addition, HIPIMS can provide high plasma density (1019 m-3) and high metallic-ion density. Because of these characteristics, this study used both HIPIMS and DCMS to deposit the dielectric layer on the MOS capacitors.
ZrO2 is a material with the properties of high dielectric constant (~19-25), wide band gap (5.1-7.8 eV), and stable thermal stability. So we selected ZrO2 as the dielectric layer of MOS capacitors and TiN as the metal layer. After rapid thermal annealing (RTA) annealing at 800 ℃, we observed the physical characteristics of MOS capacitors. Then we coated aluminum as the electrode, followed by measurement of electrical properties. Hence the structure of the MOS capacitors is Al/ TiN/ ZrO2/ p-Si. The results showed that the ionization of HIPIMS can improve the quality of ZrO2 layers and therefore the capacitors result in a better electrical property. Moreover, HIPIMS also effectively increase the film hardness.
[1] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
[2] U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications", Thin Solid Films, Vol. 513, pp. 1-24 (2006).
[3] I. Petrov, A. Myers, J.E. Greene, and J.R. Abelson, "Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+ N2 mixtures", Journal of Vacuum Science & Technology A, Vol. 12, No. 5, pp. 2846-2854 (1994).
[4] D. Lundin and K. Sarakinos, "An introduction to thin film processing using high-power impulse magnetron sputtering", Journal of Materials Research, Vol. 27, No. 5, pp. 780-792 (2012).
[5] H. Sasaki, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai, "1.5 nm direct-tunneling gate oxide Si MOSFET's", Electron Devices, IEEE Transactions on, Vol. 43, No. 8, pp. 1233-1242 (1996).
[6] L. Kang, B.H. Lee, W.J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, "Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric", IEEE Electron Device Letters, Vol. 21, pp.181-183 (2000).
[7] H.S. Choi, K.S. Seol, D.Y. Kim, J.S. Kwak, C.S. Son, and I.H. Choi, "Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates", Vacuum, Vol. 80, pp. 310–316 (2005).
[8] S. Abermann, O. Bethge, C. Henkel, and E. Betagnolli, "Atomic layer deposition of ZrO2/La2O3 high-k dielectrics on germanium reaching 0.5 nm equivalent oxide thickness", Journal of Applied Physics, Vol. 94, pp. 262904 (2009).
[9] G.D. Wilk, R.M. Wallace, and J.M. Anthony, "High-gate dielectrics: Current status and materials properties considerations", Journal of Applied Physics, Vol. 89, pp. 5243 (2001).
[10] J. Robertson, "Electronic structure and band offsets of high-dielectric-constant gate oxides", Journal of the Electrochemical Society, Vol. 114, pp. 266-274 (1967).
[11] H.X. Xu, J.P. Xu, C.X. Li, and P.T. Lai, "Electrical properties of Ge metal-oxide-semiconductor capacitors with La2O3 gate dielectric annealed in different ambient", Thin Solid Films, Vol. 518, pp. 6962-6965 (2010).
[12] K.C. Lin, J.Y. Chen, H.W. Hsu, H.W. Chen, and C.H. Liu, "Leakage current condition behaviors of 0.65 nm equivalent-oxide-thickness HfZrLaO gate dielectrics", Solid-State Electronics, Vol. 77, pp. 7-11 (2012).
[13] S. Pan, S.J. Ding, Y. Huang, Y.J. Huang, D.W. Zhang, L.K. Wang, and R. Liu, "High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors", Journal of Applied Physics, Vol. 102, pp. 073706 (2007).
[14] C.H. Fu, K.S. Chang-Liao, Y.A. Chang, Y.Y. Hsu, T.H. Tzeng, T.K. Wang, D. W. Heh, P.Y. Gu, and M.J. Tsai, "A low gate leakage current and small equivalent oxide thickness MOSFET with Ti/HfO2 high-k gate dielectric", Microelectronic Engineering, Vol. 88, pp. 1309-1311 (2011).
[15] J. Robertson, "Band offsets of wide band gap oxides and implications for future electronic devices", Journal of Vacuum Science & Technology B, Vol. 18, pp. 1785 (2000).
[16] P.C. Juan, J.H. Lu, and M.W. Lu, "Improvement on reliability properties of metal-ferroelectric (BiFeO3)-insulator (HfO2)-semiconductor structures fabricated by oxygen-incorporated magnetron sputtering", Journal of the Electrochemical Society, Vol. 155, pp. 991-994 (2008).
[17] K.S. Min, C. Park, C.Y. Kang, C.S. Park, B.J. Park, Y.W. Kim, B.H. Lee, J. C. Lee, G. Bersuker, P. Kirsch, R. Jammy, and G.Y. Yeom, "Improvement of metal gate/high-k dielectric CMOSFETs characteristics by atomic layer etching of high-k gate dielectric", Solid-State Electronics, Vol. 82, pp. 82-85 (2013).
[18] C.H. An, M.S. Lee, J.Y. Choi, and H. Kim, "Change of the trap energy levels of atomic layer deposited HfLaOx films with different La concentration", Applied Physics Letters, Vol. 94, pp. 262901 (2009).
[19] C.H. Liu, H.W. Chen, S.Y. Chen, H.S. Huang, and L.W. Cheng, "Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics", Applied Physics Letters, Vol. 95, pp. 012103 (2009).
[20] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, "Effect of Hf metal predepositon on the properties of sputtered HfO2/Hf stacked gate dielectrics", Journal of Applied Physics, Vol. 81, pp. 2053 (2002).
[21] K. Kato, T. Saito, S. Shibayama, M. Sakashita, W. Takeuchi, N. Taoka, O. Nakatsuka, and S. Zaima, "Stabilized formation of tetragonal ZrO2 thin film with high permittivity", Thin Solid Films, Vol. 557, pp. 192-196 (2014).
[22] B. Kra´lik, E.K. Chang, and S.G. Louie, "Structural properties and quasiparticle band structure of zirconia", Physical Review B, Vol. 57, pp. 7027 (1998).
[23] W.J. Qi, R. Nieh, B.H. Lee, L. Kang, Y. Jeon, and J.C. Lee, "Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application", Journal of Applied Physics, Vol. 77, pp. 3269 (2000).
[24] T.S. Jeon, J.M. White, and D.L. Kwong, "Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si (100) ", Journal of Applied Physics, Vol. 78, pp. 368 (2001).
[25] W.J. Qi, R. Nieh, E. Dharmarajan, R.H. Lee, Y. Jeon, L. Kang, K. Onishi, and J.C. Lee, "Ultrathin zirconium silicate film with good thermal stability for alternative gate dielectric application", Journal of Applied Physics, Vol. 77, pp. 1704 (2000).
[26] W.B. Bluemental, "The chemical behavior of zirconium", Journal of the American Chemical Society, pp. 201-219 (1958).
[27] T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, "Band diagram and carrier conduction mechanism in ZrO2/Zr-silicate/Si MIS structure fabricated by pulsed-laser-ablation deposition", in IEDM Technical Digest, pp. 19-22 (2000).
[28] C.H. Liu and F.C. Chiu, "Electrical characterization of ZrO2/Si interface
properties in MOSFETs with ZrO2 gate dielectrics" IEEE Electron Device Letters, Vol. 26, pp. 62-64 (2007).
[29] M. Wittmer, J. Noser, and H. Melchior, "Oxidation Kinetics of TiN thin films", Journal of Applied Physics, Vol. 52, pp. 6659-6664 (1981).
[30] R.K. Waits, "Edison’s vacuum coating patents", Journal of Vacuum Science & Technology A, Vol. 19, No. 4, pp. 1666-1673 (2001).
[31] C. Christou and Z.H. Barber, "Ionization of sputtered material in a planar magnetron discharge", Journal of Vacuum Science & Technology A, Vol. 18, No. 6, pp. 2897-2907 (2000).
[32] Y. Pauleau, "Generation and evolution of residual stresses in physical vapour-deposited thin films", Vacuum, Vol. 61, No. 2, pp. 175-181 (2001).
[33] R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films", Journal of Physics: Condensed Matter, Vol. 6, No. 45, pp. 9519-9550 (1994).
[34] C.A. Davis, "A simple model for the formation of compressive stress in thin films by ion bombardment", Thin Solid Films, Vol. 226, No. 1, pp. 30-34 (1993).
[35] W. Henry, "Intrinsic stress in sputter-deposited thin films", Critical Reviews in Solid State and Material Sciences, Vol. 17, No. 6, pp. 547-596 (1992).
[36] Y. Lifshitz, S.R. Kasi, and J.W. Rabalais, "Subplantation model for film growth from hyperthermal species: Application to diamond", Physical Review Letters, Vol. 62, No. 11, pp. 1290-1293 (1989).
[37] G.C.A.M. Janssen and J.D. Kamminga, "Stress in hard metal films", Applied Physics Letters, Vol. 85, No. 15, pp. 3086-3088(2004).
[38] V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities", Surface and Coatings Technology, Vol. 85, No. 15, pp. 290-293 (1999).
[39] A.P. Ehiasarian, R. New, W.D. Münz, L. Hultman, U. Helmersson, and V. Kouznetsov, "Influence of high power densities on the composition of pulsed magnetron plasmas", Vacuum, Vol. 65, No. 2, pp. 147-154 (2002).
[40] J. Alami and P. Thesis, "Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering", Linkoping University (2005).
[41] A. Anders, "A structure zone diagram including plasma-based deposition and ion etching", Thin Solid Films, Vol.518, No.15, pp. 4087-4090 (2010).
[42] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art", Surface and Coatings Technology, Vol. 204, No. 11, pp. 1661-1684 (2010).
[43] H. Takikawa and H. Tanoue, "Review of cathodic arc deposition for preparing droplet-free thin films", Plasma Science, IEEE Transactions on, Vol. 35, No. 4, pp. 992-999 (2007).
[44] S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, and L. Hultman, "Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/ N2", Journal of Applied Physics, Vol. 112, No. 1, pp.013305 (2012).
[45] D.J. Christie, F. Tomasel, W.D. Sproul, and D.C. Carter, "Power supply with arc handling for high peak power magnetron sputtering", Journal of Vacuum Science & Technology A, Vol. 22, No. 4, pp. 1415-1419 (2004).
[46] J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig, "On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering", Journal of Physics D: Applied Physics, Vol. 42, No. 1, pp. 015304 (2009).
[47] S. Konstantinidis, J.P. Dauchot, M. Ganciu, A. Ricard, and M. Hecq, "Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges", Journal of Applied Physics, Vol. 99, No. 1 (2006).
[48] D.J. Christie, "Target material pathways model for high power pulsed magnetron sputtering", Journal of Vacuum Science & Technology A, Vol. 23, No. 2, pp. 330-335 (2005).
[49] I. Manika and J. Maniks, "Size effects in micro-and nanoscale indentation", Acta Materialia, Vol. 54, No. 8, pp. 2049-2056 (2006).
[50] K.D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, and G. Erkens, "The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation", Materials Characterization, Vol. 49, No. 2, pp. 149-156 (2002).
[51] M.B. Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, P. Houdy, and J.L. Bozet, "Nanoindentation investigation of Ti/TiN multilayers films", Journal of Applied Physics, Vol. 87, No. 11, pp. 7753-7757 (2000).
[52] F.K. Mante, G.R. Baran, and B. Lucas, "Nanoindentation studies of titanium single crystals", Biomaterials, Vol. 20, No. 11, pp. 1051-1055 (1999).
[53] M.S. Bobji and S.K. Biswas. "Deconvolution of hardness from data obtained from nanoindentation of rough surfaces", Journal of Materials Research, Vol. 14, No. 6, pp. 2259-2268 (1999).
[54] M. Qasmi, P. Delobelle, F. Richard, and A. Bosseboeuf, "Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate", Surface and Coatings Technology, Vol. 200, No. 14, pp. 4185-4194 (2006).
[55] N. Yu, A.A. Polycarpou, and T.F. Conry, "Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation", Thin Solid Films, Vol. 450, No. 2, pp. 295-303 (2004).
[56] J. Rodriguez and M.G. Maneiro, "A procedure to prevent pile up effects on the analysis of spherical indentation data in elastic–plastic materials", Mechanics of Materials, Vol. 39, No. 11, pp. 987-997 (2007).