簡易檢索 / 詳目顯示

研究生: 劉錦璋
Gin Chang, Liu
論文名稱: 從曲率理論探討助跑對單腳與雙腳垂直跳躍的影響
The Effects Of The Approach On One-Foot and Two-Foot Vertical Jumps—By Curvature Theory
指導教授: 黃長福
Huang, Chen-Fu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 垂直跳、單腳和雙腳、助跑、曲率、衝量
英文關鍵詞: vertical jump, one-foot and two-foot, approach, curvature, impulse
論文種類: 學術論文
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為應用曲率理論探討助跑對單腳與雙腳垂直跳躍的影響,實驗受試者為高中男子排球隊與女子排球隊各12名,(其中男選手的平均年齡、身高與體重分別為17.6±0.63歲、186.5±2.06公分以及79.04±5.32公斤;而女選手的平均年齡、身高與體重分別為17.8±0.73、169.8±3.24公分以及64.3±7.46公斤),每位選手需分別以雙腳與單腳等不同方式進行三種垂直跳,包括原地垂直跳、第一距離的助跑垂直跳與第二距離的助跑垂直跳,其中過程中以高速攝影機(Redlake, 250 Hz)進行矢狀面(sagittal plane)2D拍攝以取得相關運動學資料,並以Kistler Quattro Jump 測力板,取得垂直方向的跳躍時著地期的單維力量。
    透過運動學的分析與人體勁度的運算,以及由曲率理論算出的衝量所推估出的提昇高度HCurvature與實驗的提昇高度HCMJ-APJ (助跑跳的高度與原地跳高度之差)作相關分析後,主要研究結果為:(一)相對於原地垂直跳,助跑垂直跳所能提昇的高度的比值RAp,單腳助跑跳躍(RAp值男選手0.84±0.18與女選手0.70±0.38)顯著高於雙腳的助跑跳躍的值(0.48±0.16與0.32±0.18);(二) 單腳助跑跳躍有較小的徑向位移,但有較大類人體勁度(stiffness)的趨勢,但不達顯著差異(p<.05);(三) 助跑提昇高度HCMJ-APJ與曲率理論推估高度HCurvature的相關方面,單腳跳躍與雙腳跳躍的相關係數R值分別為0.55與0.70,以上相關值屬於中相關以上,尤其以單腳跳躍的型態,因此,根據以上結果,曲率理論推估的提昇高度對於助跑效益而言,為有效的量化評估方法。

    The purpose of this study was to investigate the effects of the approach on one–foot and two–foot vertical jumps by curvature theory. The subjects participated in this study were the senior high school volleyball players with age 17.6±0.63 years, height 186.5±2.06 cm and weight 79.04±5.32 kg in boys and age 17.8±0.73 years, height 169.8±3.24 cm and weight 64.3±7.46 kg in twelve girls. Each subject performed three varied vertical jumps (without approach, approach with shorter distance and approach with longer distance) by both one-foot and two-foot. Redlake high-speed camera (250 Hz) was used to 2D cinematograph analysis at sagittal plane, and the vertical component of ground reaction force recorded by force plate (Quattro Jump, 500 Hz) during takeoff phase.
    By processing the analysis of kinematics, the calculation of human stiffness, and the correlation analysis between the estimated lift height HCurvature, which was determined by the impulse from curvature theory, and experimental lift height HCMJ-APJ, the results could be summarized as following: 1. for the ratio of approach lift-height RAp, the one-foot jump(male: 0.84±0.18, female: 0.70±0.38) significantly greater than two-foot jump(male:0.48±0.16, female: 0.32±0.18); 2. one-foot jump have smaller radial displacement, and with trends of greater human stiffness (but without significant difference, p<.05); 3. for the correlation analysis of HCurvature and HCMJ-APJ, the correlation coefficient R of one-foot and two-foot vertical jump are 0.55 and 0.70, respectively. Which are belonging to middle and higher level of correlation, especially in one-foot vertical jump. And based on the results, for the efficiency of horizontal approach, the estimated lift-height from curvature theory is the valid and quantitative parameter to estimate the effects of approach on vertical jumps

    目 次 中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 謝誌…………………………………………………………Ⅲ 目次…………………………………………………………Ⅳ 表次…………………………………………………………Ⅵ 圖次…………………………………………………………Ⅶ 第壹章、緒論…………………………………………………………1 第一節、 前言………………………………………………………1 第二節、 問題背景…………………………………………………1 第三節、 研究目的…………………………………………………4 第四節、 名詞操作性定義…………………………………………4 第五節、 研究限制…………………………………………………5 第貳章、文獻探討……………………………………………………6 第一節、 單腳與雙腳的原地垂直跳比較研究…………………….6 第二節、 助跑速度對跳躍高度的研究…………………………….9 第三節、 跳高的起跳期研究……………………………………….10 第四節、 徑向位移理論的應用…………………………………….11 第五節、 助跑跳躍摸高相關研究………………………………….14 第六節、 單腳與雙腳助跑垂直跳躍比較研究…………………….15 文獻總結…………………………………………………………………18 第參章、研究方法與步驟………………………………………………19 第一節、 平面曲線的曲率(curvature of plane curves)理論……19 第二節、 研究對象與要求的動作…………………………………21 第三節、 實驗步驟要點……………………………………………22 第四節、 重心軌跡的運算…………………………………………24 第五節、 地面反作用力的取得……………………………………25 第六節、 理論的假設與推導………………………………………26 第肆章、結果與討論………………………………………………29 第一節、 運動學與動力學參數的特性…………………………29 第二節、 重心位移與類人體徑度…………………………………35 第三節、 重心軌跡曲率與推估衝量………………………………43 第伍章、結論與建議………………………………………………55 第一節、 結論………………….…………………………………55 第二節、 建議………………………………………………………55 引用文獻…………………………………………………………………56 一、 中文部分……………………………………………………56 二、 英文部分…………………………………………………… 56 附錄一、助跑距離一之雙腳垂直跳躍重要參數表……………61 附錄二、助跑距離二之雙腳垂直跳躍重要參數表……………62 附錄三、助跑距離一之單腳垂直跳躍重要參數表……………63 附錄四、助跑距離二之單腳垂直跳躍重要參數表……………64 附錄五、助跑距離一之雙腳垂直跳躍重要參數表……………65 附錄六、HCurvature –HCMJ-APJ 回歸統計表……………………66

    一、 中文部分
    李書維。(1996)。不同高度著地反彈跳之生物力學分析。未出版的碩士論文,國立台灣師範大學體育研究所,台北市,台灣。
    徐天賜。(2000)。從曲率理論探討跳遠助跑最後一步及起跳動作。未出版的碩士論文,國立台灣師範大學體育研究所,台北市,台灣。
    二、 英文部分
    Ae, M., & Shibukawa, K. (1980). A biomechanical method for the analysis of the body segments in human movement. Japanese Journal of Physical Education, 25, 233-243.
    Anderson, F.C., & Pandy, M.G. (1993). Storage and utilization of elastic strain energy during jumping. Journal of Biomechanics, 26, 1413-1428.
    Arampatzis, A., Bruggemann, G.-P., Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics, 32, 1349-1353.
    Blickhan, R. (1989). The spring-mass model for running and hopping.
    Asmussen, E., & Bonde-Petersen, F. (1974). Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiologica Scandinavica, 91, 385-392.
    Basemajian, J. V. (1978). Muscles alive: their functions revealed by electromyography. Baltimore: The Williams &Wilkins Co. pp. 23-27.
    Bobbert, M., Mace, M., Schinkelshoek, D., Huijing, P.A., & Ingen Schenau, G.J., van. (1986). Biomechanical analysis of drop and countermovement jumps. European Journal of Applied Physiology, 54,566-573.
    Cavagna, G.A., Dusman, B., & Margaria, R. (1968). Positive work done by previously stretched muscle. Journal of Applied Physiology, 24, 21-32.
    Coutts, K.D. (1982). Kinetic differences of two volleyball jumping techniques. Medicine and Science in Sports and Exercise, 14, 57-59.
    Dapena, J. (1980a). Mechanics of translation in the Fosbury-flop. Medicine and Science in Sports and Exercise, 12, 37-44.
    Dapena, J. (1980b). Mechanics of rotation in the Fosbury-flop. Medicine and Science in Sports and Exercise, 12, 45-53.
    Dapena, J., & Chung, C.S. (1988). Vertical and radial motions of the body during the take-off phase of high jumping. Medicine and Science in Sports and Exercise, 20, 290-302.
    Dapena, J., McDonald, C., & Cappaert, J. (1990). A regression analysis of high jumping technique. International Journal of Sport Biomechanics, 6, 246-261.
    Dempster, W. T. (1955). Space requirements of the seated operator. WADC Technical Report 55-159. Wright-Patterson Air Force Base, OH, 1955, pp. 1-253.
    Dyatchkov, V. M. (1968). The high jump. Track Technique. 34, 1059- 1074.
    Fenn, W.O., & Marsh, B.S. (1935). Muscular force at different speeds of shortening. Journal of Physiology, 85, 277-297.
    Fox, E.L., Bowers, R.W., & Foss, M.L. (1988). The physiological basis of physical education and athletics. Dubuque, IA: Brown.
    Frigo, C. & A. Pedotti. (1978). Determination of muscles length during locomotion. In E. Asmussen & K. J&oslash;rgensen (Eds.), Biomechanics III (pp. 224-229). Baltimore, MD: University Park Press.
    Gregoire, L., H.E. Veeger, P.A. Huijing, and G.J. van Ingen Schenau (1984). Role of mono- and bi-articular muscles in explosive movements. International Journal of Sports Medicine. 5, 301-305.
    Harman, E.A., Rosenstein, M.T., Frykman, P.N., & Rosenstein, R.M. (1990). The effects of arms and countermovement on vertical jumping. Medicine and Science in Sports and Exercise, 22, 825-833.
    Hay, J.G., & Reid, J.G. (1988). Anatomy, mechanics, and human motion. Englewood Cliffs, NJ: Prentice Hall.
    Healy, J. (1977). Effects of various approaches on the vertical jump in volleyball. Unpublished master's thesis. Western Illinois University, Macomb.
    Hinrichs, R.N., & Vint, P.F. (1994). A comparison of Sargent jump height and actual flight height in vertical jumping. Paper presented at the American Society of Biomechanics Annual Meeting, Columbus, OH.
    Ingen Schenau, G.J. van. (1984). An alternative view of the concept of utilisation of elastic strain energy in human movement. Human Movement Science, 3, 301-336.
    Kayambashi, K. (1977). Effects of approaches and takeoffs on the vertical jump in volleyball. Unpublished master's thesis. Western Illinois University,
    Komi, P.V. (1973). Measurement of the force-velocity relationship in human muscle under concentric and eccentric contractions. In S. Cerquiglini, A. Venerando, & J. Wartenweiler (Eds.), Biomechanics III (pp. 224-229). Baltimore, MD: University Park Press.
    Komi, P.V., & Bosco, C. (1978). Utilization of stored elastic energy in leg extensors by men and women. Medicine and Science in Sports and Exercise, 10, 261-265.
    Lees A, Fahmi E. (1994). Optimal drop heights for plyometric training. Ergonomics; 37(1), 14-18.
    Ozolin, N. (1973). The high jump takeoff mechanism. Track Technique. 52, 1668-1671.
    Pandy, M.G., & Zajac, F.E. (1991). Optimal muscular coordination strategies for jumping. Journal of Biomechanics, 24(1), 1-10.
    Perrine, J.J., & Edgerton, V.R. (1978). Muscle force-velocity and power-velocity relationships under isokinetic loading. Medicine and Science in Sports and Exercise, 10, 159-166.
    Saunders, H.L. (1980). A cinematographical study of the relationship between speed of movement and available force. Unpublished doctoral dissertation, Texas A&M University, College Sta-tion.
    Soest, A.J. van, Roebroek, M.E., Bobbert, M.F., Huijing, P.A., & Schenau, G.J. van. (1985). A comparison of one-legged and two-legged countermovement jumps. Medicine and Science in Sports and Exercise, 17, 635-639.
    Stefanyshyn, D. J., Nigg, B. M. (1998). Dynamic angular stiffness of the ankle joint running and sprinting. Journal of Applied Biomechanics, 14, 292-299.
    Vint, P. E. & Hinrichs, R. N. (1996). Differences between one-foot and two-foot vertical jump performance. Journal of Applied Biomechanics, 12, 338-639.
    Zajac, F.E. (1993). Muscle coordination of movement: A perspective. Journal of Biomechanics, 26(SI), 109-124.

    無法下載圖示
    QR CODE