簡易檢索 / 詳目顯示

研究生: 潘思如
Sz-Ru, Pan
論文名稱: 高分子聚合物製備石墨烯
Growth Graphene from PMMA Source
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 119
中文關鍵詞: 石墨烯銅箔高分子聚合物紅外線黃金鍍膜快速升溫爐
論文種類: 學術論文
相關次數: 點閱:180下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯具有眾多優異特性,於近幾年蓬勃發展,無論是針對其理論特性亦或是實驗量測皆掀起一陣熱潮,其優異特性如超高電子遷移率、電導率、熱導率、透光性及機械特性等,將被廣泛應用於各學界,亦因石墨烯擁有眾多特性,促使本實驗對其進行探究。
    石墨烯製備方法許多,除最先利用膠帶之機械剝離法,發現了單層石墨烯外,另有其他眾多方式,如:氧化還原法、化學氣相沉積法、碳化矽延展生長法等,以及於2010年發表至Nature期刊初次利用固態碳源製備石墨烯之方法,本實驗石墨烯製備方法即採用固態碳源製備石墨烯。
    本實驗利用高分子聚合物PMMA塗佈於完成預處理之25 m厚的銅箔上並進行烘烤後,將處理完成之樣品置於紅外線黃金鍍膜快速升溫加熱爐(RTA)中,執行石墨烯高溫製程,藉由調控製程溫度、塗佈轉速、氣體流量、降溫條件等製備環境之操控以製備石墨烯。
    使用銅箔與PMMA作為基板與碳源,除了銅箔取得容易,其還具有催化碳分子堆積於銅箔表面之特性,而固態碳源PMMA亦是實驗材料中容易取得之材料,利用PMMA成功製備出石墨烯,可藉以推廣應用至各項含碳物質,生活環境中眾多物質皆有機物,可取之運用做為製備石墨烯之碳源。
    本實驗製備石墨烯之過程,藉由縝密之實驗條件改善後,本實驗結果成功製備石墨烯成膜於銅箔表面,將樣品進行轉移至載玻片,利用拉曼光譜儀檢測樣品品質與層數,可成功生成單層與雙層石墨烯,表面型態則藉由光學顯微鏡進行檢測。

    摘要 I 總目錄 II 圖目錄 V 表目錄 XI 第一章 緒論 1 1.1研究動機 1 1.2石墨烯簡介 1 1.2.1石墨烯之發現 1 1.2.2石墨烯結構 4 1.2.3石墨烯之特性介紹 7 1.3文獻回顧 8 1.4研究目的與特色 16 第二章 石墨烯基本特性與原理 18 2.1石墨烯基本特性與理論 18 2.1.1石墨烯能帶結構特性與理論 18 2.1.2石墨烯電子結構特性與理論 22 2.1.3石墨烯半整數量子霍爾效應(Quantum Hall Effect;QHE) 28 2.1.4石墨烯之力學特性 36 2.1.4石墨烯特性之熱學特性 42 2.2石墨烯之製備方法 45 2.2.1機械剝離法 45 2.2.2晶體外延生長法 46 2.2.3化學氣相沉積法 47 2.2.4化學氧化還原法 49 2.2.5固態碳源裂解法 52 第三章 樣品製備實驗流程與樣品量測儀器 53 3.1樣品製備預處理之流程 53 3.1.1塗佈碳源 53 3.1.2烘烤 54 3.2固態碳熱裂解法石墨烯製程步驟 56 3.2.1高溫退火製備石墨烯 56 3.3轉移過程 61 3.4拉曼光譜儀 64 3.4.1拉曼現象之發現 64 3.4.2拉曼光譜之原理 67 3.5掃描式電子顯微鏡 74 第四章 結果與分析討論 76 4.1初始實驗探究 76 4.1.1期刊參數實驗 76 4.1.2改變旋轉塗佈轉速 78 4.1.3改變製程氣體流量 83 4.1.4改變降溫條件 87 4.2改善實驗流程 92 4.2.1高溫製程環境討論 92 4.3銅箔預處理 98 4.4改善薄膜厚度 102 4.5改善氫氣流量 105 第五章 結論 111 參考文獻 114

    1. Landau and L. D. Zur, Theorie der Phasenumwandlungen II, Phys. Z. Sowjetunion 11, 26-35 (1937).
    2. N. D. Mermin, Crystalline Order in Two Dimensions, Phys. Rev.176, 250-254 (1968).
    3. A. K. Geim and K. S. Novoselov, The Rise of Grapheme, Nature Mater. 6, 183-191 (2007).
    4. X. Lu, M. Yu, H. Huang and R. S Ruoff, Tailoring Graphite with the Goal of Achieving Single Sheets, Nanotechnology 10, 269-272 (1999).
    5. 科學人2010年第106期12月號
    6. V. Singha, D. Jounga, L. Zhaia, S. Dasa, S. I. Khondakera and S. Seal, Graphene Based Materials: Past, Present and Future, Prog. Mater. Sci. 56, 1178-1271 (2011).
    7. The Washington post : http://www.washingtonpost.com/wp-dyn/content/gallery/2010/10/05/GA2010100503982.html
    8. Solid smack : http://solidsmack.com/3d-cad-technology/the-thinnest-3-dimensional-material-in-the-entire-known-universe-its/
    9. Physics World : http://physicsworldarchive.iop.org/index.cfm?action=summary&doc=19%2F11%2Fphwv19i11a34%40pwa-xml&qt
    10. A. Naeemi and J. D. Meindl, Electron Transport Modeling for Junctions of Zigzag and Armchair Graphene Nanoribbons (GNRs), IEEE. 29, 497-499 (2008).
    11. Graphene Literature Review : http://graphenelitreviews.blogspot.tw/2009/02/electronic-and-magnetic-properties-of.html
    12. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett.8, 902-907 (2008).
    13. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature 457, 706-710 (2009).
    14. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J. M. Tour, Growth of Graphene from Solid Carbon Sources, Nature 468, 549-511 (2010).
    15. G. Ruan, Z. Sun, Z. Peng and J. M. Tour, Growth of Graphene from Food, Insect and Waste, ACS Nano 5, 7601-7607 (2011).
    16. Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P. M. Ajayan and J. M. Tour, Growth of Bilayer Graphene on Insulating Substrates, ACS Nano 5, 8187-8192 (2011).
    17. Z. Peng, Z. Yan, Z. Sun and J. M. Tour, Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion Through Nickel, ACS Nano 5, 8241-8247 (2011).
    18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Two-Dimensional Gas of Massless Dirac Fermion in Graphene, Nature 438, 197-200 (2005).
    19. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109-162 (2009).
    20. Condensed Matter Department : http://www.pks.mpg.de/mpi-doc/CondensedMatter//content/QuantHall.shtml
    21. K. Nakada, M, Fujita, G. Dresselhaus and M. S. Dresselhaus, Edge State in Graphene Ribbons : Nanometer Size Effect and Edge Shape Dependence, Phys. Rev. B 54,17954-17961 (1996).
    22. Y. W. Son, M. L. Cohen and S. G. Louie, Energy Gap in Graphene Nanoribbons. Phy. Rev. Lett. 97, 216803-216806 (2006).
    23. M. Y. Han, B. Özyilmaz, Y. Zhang and P. Kim, Energy Band Gap Engineering of Graphene Nanoribbons, Phy. Rev. Lett. 98, 206805-206808 (2007).
    24. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer and P. Kim, Landau-Level Splitting in Graphene in High Magnetic Fields, Phy. Rev. Lett. 96, 136806-136809 (2006).
    25. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene, Nature 428, 201-204 (2005).
    26. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306, 666-669 (2004).
    27. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, Unconventional Quantum Hall Effect and Berry’s Phase of 2π in Bilayer Graphene, Nature Physics 2, 177-180 (2006).
    28. Z. Xu and M. J. Buehler, Geometry Controls Conformation of Graphene Sheets : Membranes, Ribbons and Scrolls, ACS Nano 4, 3869-3876 (2010).
    29. Li-Feng Wang and Quan-Shui Zheng, Extreme anisotropy of graphite and single-walled carbon nanotube bundles, APPL. Phys. Lett 90.153113(2007).
    30. Science News : http://www.sciencenews.org/view/access/id/39865/title/Graphene_from_gases_for_new,_bendable_
    31. L. Lindsay, D. A. Broido and N. Mingo, Flexural Phonons and Thermal Transport in Graphene, Phys. Rev. B 82, 115427-115432 (2010).
    32. S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau and A. A. Balandin, Dimensional Crossover of Thermal Transport in Few-Layer Graphene, Nature 9, 555-558 (2010).
    33. M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, A. L. Elías, E. Muñoz-Sandoval, A. G. Cano-Márquez, J. C. Charlier and H. Terrones, Graphene and Graphite Nanoribbons : Morphology, Properties, Synthesis, Defect and Applications, Nano Today 5, 351-372 (2010).
    34. Z. Xu, Graphene Nano-Ribbons Under Tension, JCTN. 6, 625-628 (2009).
    35. BIOGRAPHY : http://www.biography.co.in/tag/c-v-raman
    36. Biotech Profiles : http://www.biotechprofiles.com/companyfiles/madisonnetwork/5bdd0a9f37694d6c9fb6e62db5049477.pdf
    37.APS Physics : http://www.aps.org/publications/apsnews/200902/physicshistory.cfm
    38.ATOMIC & MOLECULAR PHYSICS : http://www.physics.iitm.ac.in/~labs/amp/
    39.Bergen Geoanalytical Facility : http://www.geo.uib.no/bgf/index.php/raman/ramantech
    40.臺灣科技大學: http://web.ntust.edu.tw/~myang/ia/ch18/raman.html
    41.Thermo Scientific : http://www.thermo.com.cn/Product4225.html#
    42.材料世界網 : http://www.materialsnet.com.tw/AD/DImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
    43. K. V. Klitzing, G. Dorda and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494-497 (1980).
    44. D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1559-1562 (1982).

    下載圖示
    QR CODE