簡易檢索 / 詳目顯示

研究生: 呂承儫
Lu, Chen-Hao
論文名稱: 以克拉芳香六重組圖論探討奈米石墨烯緞帶電子結構之拓撲性質
A chemical view of the bulk edge correspondence of the graphene nanoribbons in the Clar's sextet perspective
指導教授: 李祐慈
Li, Elise Y.
口試委員: 許良彥
Hsu, Liang-Yan
張明哲
Chang, Ming-Che
李祐慈
Li, Elise Y.
口試日期: 2023/07/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 手性繞圈數拓撲不變量克拉六重態奈米石墨烯緞帶圖論
英文關鍵詞: chiral winding number, topological invariant, Clar's sextet rule, graphene nanoribbons, graph theory
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300977
論文種類: 學術論文
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手性繞圈數(chiral winding number)Z與拓撲不變量(topological invariant) Z2皆為廣泛運用於探討一維週期材料電子結構拓撲性質(topological properties)的重要理論,能預測材料是否有受對稱性保護之邊界或邊緣能態(Boundary or Edge states)。但對於手性繞圈數與拓撲不變量的探討往往是透過能帶的貝里相位(Berry phase)或瓦尼爾函數(Wannier functions)等物理概念與數學運算推導,難以建立直觀的視覺圖像。
    如極化現代理論(modern theory of polarization)中所述,材料能帶的貝里相位對應到該能帶瓦尼爾函數的平均位置,因此若是能利用圖論方法藉由材料的幾何結構直接推斷出瓦尼爾函數的分布,便能省略繁雜的拓撲參數計算直接理解材料電子結構的拓撲性質。
    在本篇論文中,我們以化學結構式為基礎,提出邊界/邊緣態電子結構的圖論,以一維週期材料奈米石墨帶為研究系統為例,依據克拉六重態規則(Clar’s sextet rule)建構出奈米石墨烯緞帶的凱庫勒共振路易士結構,稱之為克拉結構,能在不進行複雜的拓撲參數計算下,就能直觀預測不同形狀的石墨烯材料,在材料邊緣自由電子的分布情況,並進一步預測不同材料,以不同方式相接時自由電子在邊界的分布狀態。接著並利用緊束縛近似模型(Tight Binding model)進行奈米石墨帶的微擾計算(perturbation method),探討由克拉結構預測出來的自由電子在邊緣或邊界的穩定程度。
    本篇還更進一步將此化學觀點延伸應用於傳統拓撲理論無法討論的金屬石墨帶材料系統,除了能圖像化的以克拉結構解釋金屬石墨帶的導電性,更解釋為何傳統拓撲參數於此類系統無法定義,並歸納整理出金屬材料在邊緣上的電子結構性質。
    克拉結構可為手性繞圈數以及拓撲不變量提供簡單易懂之化學觀點,以直觀視覺圖像對照其計算原理與數學推導,除讓非相關領域的學者更容易理解,並確立了石墨稀材料邊緣或邊界能態與幾何結構的圖形關聯,用以簡化未來石墨烯材料的設計原則。

    The chiral winding number Z and the topological invariant Z2 are important theoretical topological parameters in predicting the presence of symmetry-protected edge or boundary electronic states in one-dimensional periodic materials. The investigation of the chiral winding number and/or the topological invariant is usually approached through rigorous mathematical derivations of abstruse physical concepts including Berry phase, Wannier functions and so on, making it challenging to construct an intuitive visual understanding.
    As described in the modern theory of polarization, the Berry phase of a band corresponds to the average position of the corresponding Wannier function. Therefore, if we can directly visualize the distribution of Wannier functions from the geometric structure of the material, it would allow for a direct understanding of the topological properties of the material's electronic structure without the complex calculation of topological parameters.
    In this thesis, we introduce a chemical structural perspective and propose a graph theory for the electronic structure of the edge/boundary states. We apply the Kekulé resonance Lewis structure based on the Clar’s sextet rule, which is called Clar structure, on one-dimensional graphene nanoribbons which allows us to predict straightforwardly the distribution of free electrons at the edges of graphene materials with different shapes and sizes without the explicit derivation of theoretical topological parameters. Our theory also allows us to predict the distribution of free electrons at the boundaries when different materials are connected in different geometries. By employing the tight-binding approximation model, we then perform perturbation calculations on graphene nanoribbons to investigate the stability of the free electron distribution at the edges or boundaries predicted by the graph theory based on Clar structures.
    Furthermore, we extend this chemical graph theory to the electronic structure of metallic graphene nanoribbons, for which the application of conventional topological theory becomes insufficient. In addition to providing a visual explanation for the conductivity of metallic graphene nanoribbons, we also explain why it is not possible to define the topological properties in these materials. Finally, we summarize and organize the electronic structure properties of metallic materials at the edge and boundary, revealing physical insight on their behavior.
    The graph theory we proposed based on the Clar’s Sextet rule provides a comprehensible explanation and visual interpretations of the principles behind chiral winding number and topological invariant. It not only facilitates a straightforward rationalization for scholars from diverse fields but also establishes a graphical correlation between edge or boundary states in graphene materials and their geometric structure. This serves to simplify future design principles for graphene materials.

    摘要 i Abstract iii 目錄 v 圖目錄 vii 第壹章 緒論 1 1.1 週期材料的電子結構拓撲性質 1 1.2 石墨烯材料的簡介 2 1.3 一維石墨烯材料的電子結構拓撲性質計算與實驗 4 1.4 拓撲理論在石墨烯材料上的延伸 6 第貳章 計算原理與方法 7 2.1 布洛赫函數 7 2.2 瓦尼爾函數與最集中瓦尼爾函數 9 2.3 緊束縛近似模型 12 2.4 貝里相位 15 2.5 晶胞間貝里相位 18 2.6 拓撲不變量Z2與材料的邊緣和邊界對應 21 2.7 手性對稱 24 2.8 手性繞圈數Z 25 2.9 克拉六重態規則在奈米石墨烯的應用 31 第參章 計算結果與討論 33 3.1 以克拉結構探討AGNR與ZGNR的電子性質 33 3.2 克拉結構與手性繞圈數和拓撲不變量的對應 37 3.3 奈米石墨烯緞帶的克拉結構與邊緣能態的化學觀點對應 42 3.4 絕緣體奈米石墨烯緞帶的克拉結構與邊界能態的化學觀點對應 48 3.5 邊緣能態與邊界能態的穩定度探討 53 3.6 金屬性奈米石墨烯緞帶的克拉結構與拓撲性質之對應 56 第肆章 結論 61 參考文獻 62

    Zak, J. (1989). Berry’s phase for energy bands in solids. Physical Review Letters, 62(23), 2747–2750.
    Cao, T., Zhao, F., & Louie, S. G. (2017). Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains. Physical Review Letters, 119(7), 076401.
    Kane, C. L., & Mele, E. J. (2005). Quantum Spin Hall Effect in Graphene. Physical Review Letters, 95(22), 226801.
    Lodge, M. S., Yang, S. A., Mukherjee, S., & Weber, B. (2021). Atomically thin quantum spin hall insulators. Advanced Materials, 33(22), 2008029.
    Bernevig, B. A. (2013). Topological insulators and topological superconductors. Princeton university press.
    König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X., & Zhang, S. (2007). Quantum Spin Hall Insulator State in HGTE Quantum Wells. Science, 318(5851), 766–770.
    Qi, X.-L., & Zhang, S.-C. (2011). Topological insulators and superconductors. Reviews of Modern Physics, 83(4), 1057–1110.
    Schnyder, A. P., Ryu, S., Furusaki, A., & Ludwig, A. W. (2008). Classification of topological insulators and superconductors in three spatial dimensions. Physical Review B, 78(19), 195125.
    van Miert, G., Ortix, C., & Smith, C. M. (2016). Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals. 2D Materials, 4(1), 015023.
    Jiang, J., & Louie, S. G. (2020). Topology classification using chiral symmetry and spin correlations in graphene nanoribbons. Nano letters, 21(1), 197-202.
    Maffei, M., Dauphin, A., Cardano, F., Lewenstein, M., & Massignan, P. (2018). Topological characterization of chiral models through their long time dynamics. New Journal of Physics, 20(1), 013023.
    Rhim, J. W., Behrends, J., & Bardarson, J. H. (2017). Bulk-boundary correspondence from the intercellular Zak phase. Physical Review B, 95(3), 035421.
    Trainer, D. J., Srinivasan, S., Fisher, B. L., Zhang, Y., Pfeiffer, C. R., Hla, S. W., ... & Guisinger, N. P. (2022). Artificial Graphene Nanoribbons: A Test Bed for Topology and Low-Dimensional Dirac Physics. ACS nano, 16(10), 16085-16090.
    Flores, E., Mella, J. D., Aparicio, E., Gonzalez, R. I., Parra, C., Bringa, E. M., & Munoz, F. (2022). Inducing a topological transition in graphene nanoribbon superlattices by external strain. Physical Chemistry Chemical Physics, 24(11), 7134-7143.
    Zhao, F., Cao, T., & Louie, S. G. (2021). Topological phases in graphene nanoribbons tuned by electric fields. Physical review letters, 127(16), 166401.
    Madurani, K. A., Suprapto, S., Machrita, N. I., Bahar, S. L., Illiya, W., & Kurniawan, F. (2020). Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS Journal of Solid State Science and Technology, 9(9), 093013.
    Yao, F., Yu, W., Liu, C., Su, Y., You, Y., Ma, H., ... & Liu, K. (2021). Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. Nature Nanotechnology, 16(10), 1073-1078.
    Dutta, S., & Pati, S. K. (2010). Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 20(38), 8207-8223.
    Wakabayashi, K., Sasaki, K. I., Nakanishi, T., & Enoki, T. (2010). Electronic states of graphene nanoribbons and analytical solutions. Science and technology of advanced materials, 11(5), 054504.
    Delplace, P., Ullmo, D., & Montambaux, G. (2011). Zak phase and the existence of edge states in graphene. Physical Review B, 84(19), 195452.
    Lee, Y. L., Zhao, F., Cao, T., Ihm, J., & Louie, S. G. (2018). Topological phases in cove-edged and chevron graphene nanoribbons: Geometric structures, Z 2 invariants, and junction states. Nano letters, 18(11), 7247-7253.
    Lin, K. S., & Chou, M. Y. (2018). Topological properties of gapped graphene nanoribbons with spatial symmetries. Nano Letters, 18(11), 7254-7260.
    Li, J., Sanz, S., Merino-Díez, N., Vilas-Varela, M., Garcia-Lekue, A., Corso, M., ... & Pascual, J. I. (2021). Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nature communications, 12(1), 5538.
    Pizzochero, M., & Kaxiras, E. (2021). Imprinting tunable π-magnetism in graphene nanoribbons via edge extensions. The Journal of Physical Chemistry Letters, 12(4), 1214-1219.
    Liu, D. X., Li, X. F., Zhang, X. H., Cao, X., Zhu, X. J., & Shi, D. (2020). Interface magnetism in topological armchair/cove-edged graphene nanoribbons. The Journal of Physical Chemistry C, 124(28), 15448-15453.
    Houtsma, R. K., de la Rie, J., & Stöhr, M. (2021). Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chemical Society Reviews, 50(11), 6541-6568.
    Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., ... & Fasel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466(7305), 470-473.
    Gu, Y., Qiu, Z., & Müllen, K. (2022). Nanographenes and graphene nanoribbons as multitalents of present and future materials science. Journal of the American Chemical Society, 144(26), 11499-11524.
    Rizzo, D. J., Jiang, J., Joshi, D., Veber, G., Bronner, C., Durr, R. A., ... & Crommie, M. F. (2021). Rationally designed topological quantum dots in bottom-up graphene nanoribbons. ACS nano, 15(12), 20633-20642.
    Rizzo, D. J., Veber, G., Cao, T., Bronner, C., Chen, T., Zhao, F., Rodriguez, H., Louie, S. G., Crommie, M. F., & Fischer, F. R. (2018). Topological band engineering of graphene nanoribbons. Nature, 560(7717), 204–208.
    Gröning, O., Wang, S., Yao, X. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).
    Sun, Q., Yan, Y., Yao, X., Müllen, K., Narita, A., Fasel, R., & Ruffieux, P. (2021). Evolution of the topological energy band in graphene nanoribbons. The journal of physical chemistry letters, 12(35), 8679-8684.
    Rizzo, D. J., Veber, G., Jiang, J., McCurdy, R., Cao, T., Bronner, C., Chen, T., Louie, S. G., Fischer, F. R., & Crommie, M. F. (2020). Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science, 369(6511), 1597–1603.
    Ding, Z., Zeng, Y., Pan, H., Luo, N., Zeng, J., Tang, L., & Chen, K. (2022). Edge states of topological acoustic phonons in graphene zigzag nanoribbons. Physical Review, 106(12).
    Hoffmann, R. (1991). Solids and surfaces: a chemist's view of bonding in extended structures. John Wiley & Sons.
    Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I., & Vanderbilt, D. (2012b). Maximally localized Wannier functions: Theory and applications. Reviews of Modern Physics, 84(4), 1419–1475.
    Li, J., Sanz, S., Corso, M., Choi, D. J., Peña, D., Frederiksen, T., & Pascual, J. I. (2019). Single spin localization and manipulation in graphene open-shell nanostructures. Nature communications, 10(1), 200.
    Li, J., Sanz, S., Castro-Esteban, J., Vilas-Varela, M., Friedrich, N., Frederiksen, T., Peña, D., & Pascual, J. (2020). Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Physical Review Letters, 124(17).
    Roy, M. (2015). The tight binding method. Rutgers University, 5, 57.
    Xiao, D., Chang, M. C., & Niu, Q. (2010). Berry phase effects on electronic properties. Reviews of modern physics, 82(3), 1959.
    Vanderbilt, D. (2018). Berry phases in electronic structure theory: electric polarization, orbital magnetization and topological insulators. Cambridge University Press.
    Ming-Che Chang. (2021). Lecture notes on topological insulators.
    Kudin, K. N., Car, R., & Resta, R. (2007). Berry phase approach to longitudinal dipole moments of infinite chains in electronic-structure methods with local basis sets. The Journal of chemical physics, 126(23).
    Alase, A. (2019). Boundary physics and bulk-boundary correspondence in topological phases of matter. Dartmouth College.
    Lin, L., Ke, Y., & Lee, C. (2021). Real-space representation of the winding number for a one-dimensional chiral-symmetric topological insulator. Physical Review B, 103(22), 224208.
    Asbóth, J. K., Oroszlány, L., & Pályi, A. (2016). A short course on topological insulators. Lecture notes in physics, 919, 166.
    Solà, M. (2013). Forty years of Clar's aromatic π-sextet rule. Frontiers in chemistry, 22.
    Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M., & Mauri, F. (2010). Clar’s theory, π-electron distribution, and geometry of graphene nanoribbons. Journal of the American Chemical Society, 132(10), 3440-3451.

    無法下載圖示 電子全文延後公開
    2025/07/31
    QR CODE