簡易檢索 / 詳目顯示

研究生: 黃義澧
Huang, Yi-Li
論文名稱: 利用LC-MS鑑定哺乳類聚醣中差異性鏈結單醣殘基
Identifying specific and differentially linked glycosyl residues in mammalian glycans by targeted LC-MS analysis
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 醣鏈結分析部分甲基化醣醇液相層析串聯式質譜
英文關鍵詞: glycans linkage analysis, partially methylated alditol,, LC-MS
DOI URL: https://doi.org/10.6345/NTNU202202826
論文種類: 學術論文
相關次數: 點閱:111下載:77
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚醣是由數個單醣藉由糖苷鍵連結而成,由於醣蛋白中的聚醣結構具有高度複雜性,因此了解聚醣中單糖的組成與鍵結就成為重要的工作。在本實驗中開發一個方法,將聚醣經過一連串反應並水解形成 ”部份甲基化糖醇partially O-methylated alditols (PMAs)” 結合液相層析搭配串聯式質譜儀進行分析。實驗流程方面,取得聚醣後將聚醣進行還原,還原端的單醣會被還原而開環,接著進行聚醣的全甲基化,會將聚醣上所有free hydroxyl group的氫置換成甲基(CH3),甲基化聚醣以MALDI-TOF分析確認甲基化反應是否完全,最後進行聚醣的酸水解將聚醣的糖苷鍵破壞形成單醣,此時單醣在醣苷鍵位置會保留OH,最後將所有單醣進行還原得到目標分析物PMA。本實驗分析兩種聚醣的PMA,Fetuin N-glycan與Lewisa所產生的PMA都能經由LC-MS偵測。總而言之,本實驗可以鑑定出聚醣中不同鍵結的單醣,且此方法不須進行額外的衍生化實驗,與LC-MS平台有很好的相容性。

    Glycan is a compound consisting a large number of monosaccharides linked glycosidically. Due to its high complexity of glycan structures on glycoproteins, assessing the configuration and position of glycosidic linkages of a glycan is in great demand. In this study, a method via partially O-methylated alditols (PMAs) from glycan combined with LC-MS analysis is developed. N-glycans were first per-methylated with methyl iodide, and levels of methylation were further confirmed with MALDI-TOF. PMAs were then produced via totally hydrolysis and reduction. PMAs from Fetuin N-glycan and Lewisa were successfully detected by LC-MS analysis. In conclusion, this proposed glycan linkage analysis can be performed without additional derivatization step for GC analysis, and should be suitable for the LC-MS-based platform.

    目錄 目錄 I 圖目錄 IV 表目錄 VI Abstract VII 中文摘要 VIII 縮寫 IX 第一章 緒論 10 第一節 前言 10 第二節 蛋白質的醣基化 10 壹、 聚醣(glycan) 11 貳、 蛋白質醣基化類型 13 參、 蛋白質醣基化功能 16 肆、 醣蛋白分析 17 伍、 單醣的分析 20 陸、 透過PMAA進行聚醣鏈結分析 21 柒、 透過PMA進行聚醣的單醣殘基分析 22 第三節 樣品分析系統介紹 23 壹、 樣品導入系統 (Sample Inlet) 24 貳、 離子源 (Ion Source) 25 參、 質量分析器 (Mass Analyzer) 28 肆、 偵測器 (Detector) 30 伍、 真空系統(Vacuum System) 31 第四節 研究動機與目的 32 第二章 實驗器材與方法 33 第一節 實驗器材 33 第二節 PNGaseF水解Fetuin N-glycan 34 壹、 材料與試劑 34 貳、 實驗步驟 34 第三節 NaBH4 還原N-聚醣(Reduce N-glycan) 35 壹、 材料與試劑 35 貳、 實驗步驟 35 第四節 聚醣的完全甲基化(Per-methylation) 36 壹、 材料與試劑 36 貳、 實驗步驟 36 第五節 C18 spin column純化甲基化聚醣 36 壹、 材料與試劑 36 貳、 實驗步驟 36 第六節 聚醣的酸水解 37 壹、 材料與試劑 37 貳、 實驗步驟 37 第七節 部分甲基化單醣的乙醯化(Acetylation) 37 壹、 材料與試劑 37 貳、 實驗步驟 37 第八節 MALDI-TOF分析甲基化聚醣 38 壹、 分析儀器 38 貳、 基質(Matrix) 38 參、 分析參數 38 肆、 實驗步驟 38 第九節 LC-MS分析部分甲基化單糖 39 壹、 分析儀器 39 貳、 層析參數 39 第三章 結果與討論 41 第一節 MALDI-TOF分析全甲基化醣 41 第二節 LC-MS分析PMAA 42 第三節 LC-MS分析PMA 48 第四節 PMA的相對定量 55 第四章 結論與未來展望 57 第五章 參考文獻 58

    1. Hakomori, S., Traveling for the glycosphingolipid path. Glycoconj J, 2000. 17(7-9): p. 627-47.
    2. Lis, H. and N. Sharon, Protein glycosylation. Structural and functional aspects. Eur J Biochem, 1993. 218(1): p. 1-27.
    3. Apweiler, R., H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1999. 1473(1): p. 4-8.
    4. Cummings, R.D., The repertoire of glycan determinants in the human glycome. Mol Biosyst, 2009. 5(10): p. 1087-104.
    5. Varki, A. and J.B. Lowe, Biological Roles of Glycans, in Essentials of Glycobiology, A. Varki, et al., Editors. 2009: Cold Spring Harbor (NY).
    6. Service, R.F., Cell biology. Looking for a sugar rush. Science, 2012. 338(6105): p. 321-3.
    7. Johansen, P.G., R.D. Marshall, and A. Neuberger, Carbohydrates in protein. 3 The preparation and some of the properties of a glycopeptide from hen's-egg albumin. Biochem J, 1961. 78: p. 518-27.
    8. Spiro, R.G., Glycoproteins. Adv Protein Chem, 1973. 27: p. 349-467.
    9. Yamashita, Y., et al., Alterations in gastric mucin with malignant transformation: novel pathway for mucin synthesis. J Natl Cancer Inst, 1995. 87(6): p. 441-6.
    10. Marshall, R.D., The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp, 1974(40): p. 17-26.
    11. Bause, E., Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J, 1983. 209(2): p. 331-6.
    12. Kornfeld, R. and S. Kornfeld, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 1985. 54: p. 631-64.
    13. Hebert, D.N., S.C. Garman, and M. Molinari, The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol, 2005. 15(7): p. 364-70.
    14. Bennett, E.P., et al., Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012. 22(6): p. 736-56.
    15. Brockhausen, I., et al., Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem, 2001. 382(2): p. 219-32.
    16. Ma, J. and G.W. Hart, O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics, 2014. 11(1): p. 8.
    17. Schallus, T., et al., Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell, 2008. 19(8): p. 3404-14.
    18. Lowe, J.B. and J.D. Marth, A genetic approach to Mammalian glycan function. Annu Rev Biochem, 2003. 72: p. 643-91.
    19. Mitra, N., et al., N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci, 2006. 31(3): p. 156-63.
    20. Jaeken, J. and H. Carchon, Congenital disorders of glycosylation: a booming chapter of pediatrics. Curr Opin Pediatr, 2004. 16(4): p. 434-9.
    21. Defaus, S., et al., Mammalian protein glycosylation--structure versus function. Analyst, 2014. 139(12): p. 2944-67.
    22. Green, E.D., et al., The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem, 1988. 263(34): p. 18253-68.
    23. Tarentino, A.L. and T.H. Plummer, Jr., Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol, 1994. 230: p. 44-57.
    24. Tretter, V., F. Altmann, and L. Marz, Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1----3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem, 1991. 199(3): p. 647-52.
    25. Carlson, D.M., Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem, 1968. 243(3): p. 616-26.
    26. Lescher, A.D., et al., [A simple rapid method for the determination of circulating immune complexes in neoplasms: correlation with the course of the disease]. AMB Rev Assoc Med Bras, 1984. 30(1-2): p. 11-3.
    27. Morelle, W. and J.C. Michalski, Analysis of protein glycosylation by mass spectrometry. Nat Protoc, 2007. 2(7): p. 1585-602.
    28. Merkle, R.K. and I. Poppe, Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol, 1994. 230: p. 1-15.
    29. Zhang, Z., et al., Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Chem, 2012. 84(9): p. 4104-10.
    30. Rohrer, J.S., et al., Analysis of the N-acetylneuraminic acid and N-glycolylneuraminic acid contents of glycoproteins by high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology, 1998. 8(1): p. 35-43.
    31. Hase, S., T. Ikenaka, and Y. Matsushima, Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun, 1978. 85(1): p. 257-63.
    32. Yasuno, S., K. Kokubo, and M. Kamei, New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Biosci Biotechnol Biochem, 1999. 63(8): p. 1353-9.
    33. Anumula, K.R., Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal Biochem, 1994. 220(2): p. 275-83.
    34. Hara, S., et al., Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal Biochem, 1987. 164(1): p. 138-45.
    35. Anumula, K.R., Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection. Anal Biochem, 1995. 230(1): p. 24-30.
    36. Fu, D. and R.A. O'Neill, Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal Biochem, 1995. 227(2): p. 377-84.
    37. Oakley, E.T., et al., Preparation, separation and identification of partially methylated alditol acetates for use as standards in methylation analysis. Journal of Carbohydrate Chemistry, 1985. 4(1): p. 53-65.
    38. Bruins, A.P., Mechanistic aspects of electrospray ionization. Journal of Chromatography A, 1998. 794(1): p. 345-357.
    39. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
    40. Karas, M. and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988. 60(20): p. 2299-301.
    41. Clark, A.E., et al., Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev, 2013. 26(3): p. 547-603.
    42. Holcapek, M., R. Jirasko, and M. Lisa, Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A, 2012. 1259: p. 3-15.
    43. Kingdon, K., A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Physical Review, 1923. 21(4): p. 408.
    44. Makarov, A., Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Analytical chemistry, 2000. 72(6): p. 1156-1162.
    45. Kang, P., et al., Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom, 2005. 19(23): p. 3421-8.
    46. Lowenthal, M.S., E.L. Kilpatrick, and K.W. Phinney, Separation of monosaccharides hydrolyzed from glycoproteins without the need for derivatization. Anal Bioanal Chem, 2015. 407(18): p. 5453-62.

    下載圖示
    QR CODE