簡易檢索 / 詳目顯示

研究生: 歐信良
論文名稱: 以脈衝雷射鍍膜法成長PMN-PT薄膜及其性質量測
指導教授: 程金保
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 脈衝雷射鍍膜鐵電材料鈣鈦礦結構磊晶薄膜
論文種類: 學術論文
相關次數: 點閱:319下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本研究是利用具有快速鍍膜及保持多元系統化學計量比的脈衝雷射鍍膜法( pulsed laser deposition,PLD )來進行0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT)鐵電薄膜的生長。在判斷靶材與薄膜的相鑑定方面是以X-ray繞射儀來進行,薄膜厚度則是利用X-ray反射法來量測。由實驗的結果發現:在鍍膜溫度為600℃~700℃、氧壓為2x10-1 torr,可以在MgO(100)基板上成長出磊晶結構的薄膜;薄膜磊晶結構的品質則利用Φ- scan加以確認。
    實驗中藉由成長不同時間的薄膜,發現薄膜在成長時間超過60分鐘後性質上的差異。薄膜的折射率及消光係數是利用橢圓偏光儀來量測,薄膜的表面粗糙度則是利用原子力顯微鏡掃描所獲得。由實驗亦發現:當薄膜成長時間超過60分鐘,開始出現(110)及焦綠石相等其它非磊晶的結構,這樣的現象亦可由折射率和消光係數的變化及表面粗糙度的大幅增加得到印證。最後,成長La0.5Sr0.5CoO3 (LSCO)為上下電極,順利的量測到薄膜的介電性及鐵電性(極化強度-電場)。

    Abstract

    The growth of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) ferrooelectric thin films were prepared by pulsed laser deposition ( PLD ), which has the advantages of high depositing rate and maintaining the stoichiometrical ratio. The phase of target and thin films were identified with X-ray diffractometer, and the thickness of thin films was measured by x-ray reflectivity. Epitaxial 0.67PMN-0.33PT thin films on MgO(100) substrate were obtained by PLD at 600℃~700℃ and 2x10-1 torr (O2). The quality of epitaxial films was confirmed by Φ- scan.
    With different depositing time, we developed the differences of the properties by depositing thin films over 60 mintues. The refractive index and extinction coefficient of thin films were measured by spectroscopic ellipsometry, and the roughness of thin films were derived by atomic force microscopy. When the depositing time was over 60 minutes, thin films began to form other orientation of (110) and pyrochlore, and so on. It also proved by the variation of refractive index and extinction coefficient and the increase of roughness. Eventually, the dielectric and ferroelectric(P-E curve) were measured successfully by depositing the top and bottom electrode of LSCO.

    目錄 誌 謝 Ⅰ 中文摘要 II 英文摘要 III 目錄 IV 圖目錄 VII 表目錄 X 第ㄧ章 緒論 1 第二章 文獻回顧 2 2-1 晶體點群 2 2-2 鐵電材料的性質 3 2-2-1 壓電性(Piezoelectrics) 3 2-2-2 熱電性(Pyroelectricity) 3 2-2-3 鐵電性(Ferroelectric) 4 2-2-4 電光效應(electro-optic effect) 5 2-2-5 鐵電相變 5 2-3 鐵電材料的分類 9 2-4 鐵電薄膜的應用 14 2-5 PMN-PT靶材製備方法 15 2-6 脈衝雷射鍍膜 18 2-6-1 脈衝雷射鍍膜原理 19 2-6-2 脈衝雷射鍍膜系統設備 19 2-6-3 脈衝雷射鍍膜的優缺點 20 2-7 X-ray反射率 22 2-7-1 基本原理 22 2-7-2 應用分析 22 2-8 橢圓偏光儀簡介 24 2-8-1 基本原理 24 2-8-2 多層膜結構模型 25 第三章 實驗方法 28 3-1 靶材的製備 28 3-2 脈衝雷射鍍膜成長薄膜 29 3-2-1 基板的準備 29 3-2-2 脈衝雷射鍍膜設備 29 3-2-3 薄膜成長條件 30 3-3 電極的製備 30 3-4 薄膜性質量測 31 3-4-1 X-ray繞射量測 31 3-4-2 X-ray反射率(X-ray reflectivity) 31 3-4-3 橢圓偏光儀 31 3-4-4 鐵電性質量測 32 3-4-5 原子力顯微鏡 32 第四章 實驗結果與討論 39 4-1 X-ray繞射分析 39 4-1-1 0.67PMN-0.33PT靶材X-ray繞射結果分析…………………..39 4-1-2 不同溫度0.67PMN-0.33PT薄膜X-ray繞射結果分析……….39 4-1-3 Φ方位掃描(Φ- scan)……………………………………………39 4-1-4 成長時間對薄膜晶格結構影響………………………………. 40 4-2 X-ray反射率分析薄膜厚度及粗糙度 47 4-3 折射率及消光係數分析 50 4-4 原子力顯微鏡表面粗糙度分析 53 4-5 介電性與鐵電性 59 第五章 結論 62 參考文獻 63 圖 目 錄 圖2-1 晶體分類及其相互關係 2 圖2-2 正壓電效應示意圖 6 圖2-3 逆壓電效應示意圖 6 圖2-4 熱電效應示意圖 7 圖2-5 鐵電晶體內晶域極化情形:(a)未加電場(b)施以外加電場 8 圖2-6 電滯曲線示意圖 8 圖2-7 (a)BaTiO3鈣鈦礦結構示意圖 12 (b)鈣鈦礦結構視為一系列BO6八面體聯結而成 圖2-8 正規型鐵電材料PbTiO3介電常數與溫度關係圖 12 圖2-9 弛豫型鐵電材料PMN介電常數與溫度(K)關係圖 13 圖2-10 PMN-PT多相性相邊界示意圖 13 圖2-11 不同表面粗糙度下之X光反射率曲線圖 23 圖2-12 X光反射率呈現之Kiessig干涉條紋 23 圖2-13 偏振光在樣品上之基本架構圖 27 圖2-14 光在不同介面間之反射與穿透圖 27 圖3-1 實驗流程圖 33 圖3-2 PMN-PT靶材備製流程圖 34 圖3-3 脈衝雷射鍍膜系統架構圖 35 圖3-4 脈衝雷射鍍膜流程圖 36 圖3-5 Siemens D5000 X-ray 繞射儀 37 圖3-6 Bede D1 X-ray繞射儀 37 圖3-7 橢圓偏光儀 38 圖3-8 原子力顯微鏡 38 圖4-1 0.67PMN-0.33PT靶材之XRD分析結果 41 圖4-2 不同溫度下成長0.67PMN-0.33PT薄膜之XRD分析結果 42 圖4-3 0.67PMN-0.33PT(100)磊晶薄膜對(111)平面作Φ- scan之結果 43 圖4-4(a) 0.67PMN-0.33PT薄膜700℃下成長30分鐘之XRD分析結果 44 圖4-4(b) 0.67PMN-0.33PT薄膜700℃下成長45分鐘之XRD分析結果 44 圖4-4(c) 0.67PMN-0.33PT薄膜700℃下成長60分鐘之XRD分析結果 45 圖4-4(d) 0.67PMN-0.33PT薄膜700℃下成長90分鐘之XRD分析結果 45 圖4-4(e) 0.67PMN-0.33PT薄膜700℃下成長120分鐘之XRD分析結果 46 圖4-5(a) 成長薄膜5分鐘X-ray反射率圖 48 圖4-5(b) 成長薄膜10分鐘X-ray反射率圖 48 圖4-5(c) 成長薄膜15分鐘X-ray反射率圖 49 圖4-5(d) 成長薄膜20分鐘X-ray反射率圖 49 圖4-6(a) 不同時間成長薄膜之折射率比較圖 51 圖4-6(b) 不同時間成長薄膜之消光係數比較圖 52 圖4-7(a) 成長薄膜10分鐘之AFM掃描圖 54 圖4-7(b) 成長薄膜30分鐘之AFM掃描圖 55 圖4-7(c) 成長薄膜60分鐘之AFM掃描圖 56 圖4-7(d) 成長薄膜90分鐘之AFM掃描圖 57 圖4-7(e) 成長薄膜120分鐘之AFM掃描圖 58 圖4-8 0.67PMN-0.33PT薄膜介電常數隨溫度變化曲線圖 60 圖4-9 0.67PMN-0.33PT薄膜電滯曲線圖 61 表 目 錄 表3-1 靶材製備使用粉體資料 29

    參考文獻
    [1] S. W. Choi, T. R. Shrout, S. T. Jang, and A. S. Bhalla, "Dielectric and pyroelectric properties in the Pb(Mg1/3 Nb2/3)O3-PbTiO3 system", Ferroelectrics. 100, 29 (1989).
    [2] S. L. Swartz, T. R. Shrout, W. A. Schultz, and L. E. Cross, "Dielectric properties of Lead-Magnesium Niobate ceramics", J. Am. Ceram. Soc. 67, 311(1984).
    [3] L. F. Francis and D. A. Payne, "Thin layer dielectrics in the Pb[(Mg1/3Nb2/3)1-xTix]O3 system", J. Am. Ceram. Soc. 74, 3000(1991).
    [4] 汪健民主編,"陶瓷技術手冊",中華民國產業科技發展協進會及中
    華民國冶金協會出版,pp. 230~231(1994).
    [5] 吳朗,"電子陶瓷入門",全欣,pp.159-161(1992).
    [6] 吳朗,"電子陶瓷─介電陶瓷",(1994).
    [7] 詹國楨審定,朱建國主編,"電子與光電子材料",新文京,pp.139(1992).
    [8] Charles Kittel, "Introduction to Solid State Physics", 7th Ed, John Wiley
    and Sons, Inc., New York(1995).
    [9] C. -S. Tu, V. Hugo, Schmidt, and I. G. Siny, "Hypersound anomalies and elastic constants in single-crystal PbMg[sub1/3]Nb[sub2/3]O[sub3] by Brillouin scattering", J. Appl. Phys. 78, 5665 (1995).
    [10] L.E. Cross, "Relaxor Ferroelectrics", Ferroelectrics 76, 241 (1987).
    [11] L. A. Shebanov, P. P. Kapostins, and J. A. Zvirgzds, "The structure change of PMN in the diffuse phase transition region", Ferroelectrics 56, 1057 (1984).

    [12] M. L. Mulvihill, S. E. Park, G. Risch, Z. Li, K. Uchino, and T. R. Shrout, " The role of processing variables in the flux growth of Lead Zinc Niobate-Lead Titanate relaxor ferroelectric single crystals", Jpn. J. Appl.
    Phys. 35, 3984 (1996).
    [13] S. -E. Paek and T. R. Shrout, "Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals", J. Appl. Phys. 82, 1804 (1997).
    [14] Y. Yamashita, "Large electromechanical coupling factors in perovskite binary material system", Jpn J. Appl. Phys. 33, 5328 (1994).
    [15] C. -S. Tu, F. -C. Chao, C. -H. Yeh, C. -L. Tsai, and V. H. Schmidt, Phys. Rev. B 60, 6348 (1999).
    [16] B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. -G. Ye, "Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3", Phys. Rev. B 66, 054104(2002).
    [17] M. Lejeune and J. P. Boilot, "Formation mechanism and ceramic process of the ferroelectric perovskite : Pb(Mg1/3Nb2/3)O3 and Pb(Fe1/2Nb1/2)O3", . Ceram.Int. 8, 99(1982).
    [18] M. Inada, "Analysis of the formation process of the piezoelectric PMN ceramics", Jpn.Nat1.Tech.Repr. 27, 95(1977).
    [19] S. L. Swartz and T. R. Shrout, "Fabrication of perovskite Lead Magnesium Niobate", Mat. Res. Bull. 17, 1245 (1982).
    [20] L. F. Francis and D. A. Payne, " Processing, perovskite phase
    development, and dielectric properties for sol-gel derived Pb[(Mg1/3Nb2/3)0.9Ti0.1]O3 thin layers", Mater. Res. Soc. Symp. Proc. 200, 173(1990).

    [21] K. R. Udayakumar, J. Chen, P. J. Schuele, L. E. Cross, V. Kumar and S. B.
    Krupanidhi, " Polarization reversal and high dielectric permittivity in lead magnesium niobate titanate thin films", Appl. Phys. Lett. 60, 1187(1992).
    [22] J. Chen, Q. Zhang, and L. E. Cross: Ferroelectric Thin Films III, eds. E. R. Myers, and B. A. Tuttle, S. B. Desu and P. K. Larsen, Mater. Res. Soc. Symp. Proc. 310, 47(1993).
    [23] M. C. Jiang, T. Hong, and T. B. Wu, " Deposition and characterization of ferroelectric Pb[(Mg1/3Nb2/3) xTi1- x]O3 thin films by RF magnetron sputtering", Jpn. J. Appl. Phys. 33, 6301(1994).
    [24] M. C. Jiang and T. B. Wu, " Effects of electrode composition on RF magnetron sputtering deposition of Pb[(Mg1/3Nb2/3)0.7Ti0.3]O3 films", J. Mater. Res. 9, 1879 (1994).
    [25] Y. Takeshima, K. Shiratsuyu, H. Takagi, and K. Tomono, "Preparation of Lead Magnesium Niobate Titanate thin films by chemical vapor deposition", Jpn. J. Appl. Phys. 34, 5083 (1995).
    [26] C. Tantigate, J. Lee, and A. Safari, " Processing and properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films by pulsed laser deposition", Appl. Phys. Lett. 66, 1611 (1995).
    [27] Apurba Laha, S. Saha, and S. B. Krupanidhi, "Role of La0.5Sr0.5CoO3 template layers on dielectric and electrical properties of pulsed-laser ablated Pb(Nb2/3Mg1/3)O3 - PbTiO3 thin films", Thin Solid Films 424, 274(2003).
    [28] K. Y. Chan, W. S. Tsang, C. L. Mak, and K. H. Wong, "Effects of composition of PbTiO3 on optical properties of (1–x)PbMg1/3Nb2/3O3-xPbTiO3 thin films", Physical Review B. 69, 144111 (2004).
    [29] 汪健民主編,"材料分析",中國材料科學學會,pp.83~84(1991).
    [30] H. G. Tompkins and W. A. McGahan,"Spectroscopic Ellipsometry and Reflectometry, A User’s Guide", John Wiley and Sons, New York(1999).
    [31] J. C. Jans, "Nondestructive analysis by spectroscopic ellipsometry", Philips J. Res. 47, 347(1993).
    [32] R. M. A. Azzam and N. M. Bashara, "Ellipsometry and Polarized Light",
    North-Holland, Amsterdam, (1977).
    [33] D. K. Bowen and B. K. Tanner, Nanotechnology 4, 175 (1993).

    QR CODE