研究生: |
蔡瑞真 Jui-Cheng Tsai |
---|---|
論文名稱: |
篩選抑制神經膠母細胞瘤之中草藥 Screening for Effective Herbal Extracts against Glioblastoma |
指導教授: |
賴韻如
Lai, Yun-Ju |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 多型性神經膠母細胞瘤 、癌症幹細胞 、中草藥 、訊息傳導路徑 、細胞週期 |
英文關鍵詞: | glioblastoma multiforme, cancer stem cell, Chinese herbal medicine, signaling pathway, cell cycle |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多型性神經膠母細胞瘤 (GBM) 是最常見且惡性的原生性腦瘤。造成膠質母細胞瘤的原因目前還不明瞭,而現行的治療方法為結合手術、放射線與化學治療,但由於它具有高度的浸潤能力,以及對於放射線與化學治療的抵抗能力,造成疾病難以治癒並容易產生復發的狀況,這些可能是由多型性神經膠母細胞瘤的癌幹細胞引起的,故針對癌幹細胞為標靶可能是多型性膠母細胞瘤合適的治療方法。中草藥這個傳統的治療方法已在中國流傳千年之久,現今它不僅治療疾病,亦成為前景看好之生物技術產品。為了研究中草藥萃取物是否可以當作治療多型性神經膠母細胞瘤的潛力藥物,我們建立膠質母細胞瘤衍生之球細胞篩選平台,以此篩選四百種中草藥萃取物中可以有效抑制膠質母細胞瘤的細胞株的生長或存活之中草藥。目前已篩選出三種具潛力的藥物,可以有效抑制膠質母細胞瘤生長,但對於非轉型的正常細胞毒性較低。另外這些萃取物也會影響細胞移動的能力,並調控細胞ERK與AKT的訊息傳導、細胞週期與自噬作用等。另外,這些萃取物會更進一步抑制癌幹細胞的標記的表現。綜上所述,我們建立了一個多型性神經膠母細胞瘤的中草藥萃取物篩選平台,並篩選出三個有效抑制多型性神經膠母細胞瘤之萃取物,期望未來可發展為具潛力之候選藥物。
Glioblastoma (glioblastoma multiforme, GBM) is the most common and aggressive malignant primary brain tumor in adults. It is notorious for its genetic, cellular and phenotypic heterogeneity, which makes the disease difficult to target. The existence of glioblastoma stem cells (GSC or glioblastoma-initiating cells) may account for the invasiveness and drug resistance of GBM and become a suitable target for developing new treatment for this malignant disease. Chinese herbal medicine is a traditional therapy and has been used widely in Chinese for few thousand years. Nowadays, it is not only important in disease treatment, but also becomes a promising biotech product remained to be revealed by evidence-based analysis. To investigate whether herbal extracts may serve as a new drug for the treatment of glioblastoma, especially targeting GSCs, we have set up a drug screening platform using human glioblastoma cell lines-derived tumorsphere cells to screen 400 herbal extracts. Three herbal extracts have been identified, which effectively inhibited the growth of GSCs but with low or no toxicity to non-transforming cells. In addition, these extracts also inhibited the spheroid formation and cell migration ability of GSCs. The expression levels of stem cell markers such as CD133 and Sox2 were also reduced by the treatments of these extracts. The signaling pathways affected by these extracts include Akt, ERK, cell cycle regulation and apoptosis. In conclusion, we have identified three effective Chinese herbal extracts which target GSCs effectively, and could be further developed as potential therapeutics of glioblastoma.
1. Maher, E.A., et al., Malignant glioma: genetics and biology of a grave matter. Genes Dev, 2001. 15(11): p. 1311-33.
2. Singh, M., et al., Brain metastasis-initiating cells: survival of the fittest. Int J Mol Sci, 2014. 15(5): p. 9117-33.
3. Deorah, S., et al., Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg Focus, 2006. 20(4): p. E1.
4. Stupp, R., et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol, 2009. 10(5): p. 459-66.
5. Johnson, D.R. and B.P. O'Neill, Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol, 2012. 107(2): p. 359-64.
6. Ohgaki, H. and P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol, 2005. 64(6): p. 479-89.
7. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
8. Galli, R., et al., Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res, 2004. 64(19): p. 7011-21.
9. Ekstrand, A.J., et al., Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res, 1991. 51(8): p. 2164-72.
10. Wong, A.J., et al., Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A, 1992. 89(7): p. 2965-9.
11. Murat, A., et al., Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol, 2008. 26(18): p. 3015-24.
12. Hermanson, M., et al., Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res, 1992. 52(11): p. 3213-9.
13. Assanah, M., et al., Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci, 2006. 26(25): p. 6781-90.
14. Kong, D.S., et al., Prognostic significance of c-Met expression in glioblastomas. Cancer, 2009. 115(1): p. 140-8.
15. Kato, H., et al., Functional evaluation of p53 and PTEN gene mutations in gliomas. Clin Cancer Res, 2000. 6(10): p. 3937-43.
16. Fan, X., et al., Genetic profile, PTEN mutation and therapeutic role of PTEN in glioblastomas. Int J Oncol, 2002. 21(5): p. 1141-50.
17. Brown, R.E. and A. Law, Morphoproteomic demonstration of constitutive nuclear factor-kappaB activation in glioblastoma multiforme with genomic correlates and therapeutic implications. Ann Clin Lab Sci, 2006. 36(4): p. 421-6.
18. Ruano, Y., et al., Identification of survival-related genes of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma multiforme. Cancer, 2008. 112(7): p. 1575-84.
19. Lassman, A.B., et al., Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol, 2004. 1(2): p. 157-63.
20. Atkinson, G.P., S.E. Nozell, and E.T. Benveniste, NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother, 2010. 10(4): p. 575-86.
21. Lin, V.T., et al., TRIP6 regulates p27 KIP1 to promote tumorigenesis. Mol Cell Biol, 2013. 33(7): p. 1394-409.
22. Scott, J., et al., Effectiveness of radiotherapy for elderly patients with glioblastoma. Int J Radiat Oncol Biol Phys, 2011. 81(1): p. 206-10.
23. Glantz, M., et al., Temozolomide as an alternative to irradiation for elderly patients with newly diagnosed malignant gliomas. Cancer, 2003. 97(9): p. 2262-6.
24. Malmstrom, A., et al., Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol, 2012. 13(9): p. 916-26.
25. Cohen, M.H., et al., FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 2009. 14(11): p. 1131-8.
26. Ignatova, T.N., et al., Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 2002. 39(3): p. 193-206.
27. Hemmati, H.D., et al., Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A, 2003. 100(25): p. 15178-83.
28. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003. 63(18): p. 5821-8.
29. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
30. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
31. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
32. Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 2005. 65(23): p. 10946-51.
33. Choi, S.A., et al., Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer, 2014. 50(1): p. 137-49.
34. Park, D.M., et al., Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics. Sci Rep, 2013. 3: p. 1095.
35. Ruiz-Ontanon, P., et al., Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue. Stem Cells, 2013. 31(6): p. 1075-85.
36. Bao, S., et al., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res, 2006. 66(16): p. 7843-8.
37. Li, Z., et al., Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 2009. 15(6): p. 501-13.
38. Szakacs, G., et al., Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 2006. 5(3): p. 219-34.
39. Hu, H., et al., Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. Int J Cancer, 2002. 102(3): p. 250-3.
40. Lee, S.M., et al., Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci, 2002. 71(19): p. 2267-77.
41. Tsai, N.M., et al., The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clin Cancer Res, 2005. 11(9): p. 3475-84.
42. Lee, D.H., et al., Wogonin induces apoptosis by activating the AMPK and p53 signaling pathways in human glioblastoma cells. Cell Signal, 2012. 24(11): p. 2216-25.
43. Eom, K.S., et al., Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol Pharm Bull, 2008. 31(4): p. 558-62.
44. Li, Y., et al., Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci, 2012. 90(25-26): p. 962-7.
45. Fu, Y.S., et al., Tetramethylpyrazine inhibits activities of glioma cells and glutamate neuro-excitotoxicity: potential therapeutic application for treatment of gliomas. Neuro Oncol, 2008. 10(2): p. 139-52.
46. Ehtesham, M., C.B. Stevenson, and R.C. Thompson, Stem cell therapies for malignant glioma. Neurosurg Focus, 2005. 19(3): p. E5.
47. Lu, Z. and S. Xu, ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006. 58(11): p. 621-31.
48. Faissner, A., et al., DSD-1-Proteoglycan/Phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues. Adv Exp Med Biol, 2006. 557: p. 25-53.
49. Kennedy, S.G., et al., The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev, 1997. 11(6): p. 701-13.
50. Xue, G. and B.A. Hemmings, PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst, 2013. 105(6): p. 393-404.
51. Huang, C., K. Jacobson, and M.D. Schaller, MAP kinases and cell migration. J Cell Sci, 2004. 117(Pt 20): p. 4619-28.
52. Chen, J., et al., Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med, 2005. 11(11): p. 1188-96.
53. Somanath, P.R., et al., Akt1 in endothelial cell and angiogenesis. Cell Cycle, 2006. 5(5): p. 512-8.
54. Rizzo, M.T., ERK and Smads: getting together for angiogenic sprouting. Cardiovasc Res, 2007. 76(3): p. 375-6.
55. Isabelle, M., et al., Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci, 2010. 8: p. 22.
56. Ellis, P., et al., SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 2004. 26(2-4): p. 148-65.
57. Tani, Y., et al., Transcription factor SOX2 up-regulates stomach-specific pepsinogen A gene expression. J Cancer Res Clin Oncol, 2007. 133(4): p. 263-9.
58. Gontan, C., et al., Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol, 2008. 317(1): p. 296-309.
59. Yin, A.H., et al., AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997. 90(12): p. 5002-12.
60. Corbeil, D., et al., The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem, 2000. 275(8): p. 5512-20.
61. Sanai, N., A. Alvarez-Buylla, and M.S. Berger, Neural stem cells and the origin of gliomas. N Engl J Med, 2005. 353(8): p. 811-22.
62. Feng, B., et al., 2'-epi-2'-O-Acetylthevetin B extracted from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Chem Biol Interact, 2010. 183(1): p. 142-53.
63. Zhao, Q., et al., Neriifolin from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Fitoterapia, 2011. 82(5): p. 735-41.
64. Abe, F.Y., T, Studies on cerbera part 1 cardiac glycosides in the seeds bark and leaves of cerbera manghas. Chemical and Pharmaceutical Bulletin (Tokyo), 1977. 25(10): p. 2744-2748.
65. Braunwald, E., Effects of digitalis on the normal and the failing heart. J Am Coll Cardiol, 1985. 5(5 Suppl A): p. 51A-59A.
66. Ahmed, A., et al., Digoxin and reduction in mortality and hospitalization in heart failure: a comprehensive post hoc analysis of the DIG trial. Eur Heart J, 2006. 27(2): p. 178-86.
67. Brophy, J.M., Rehabilitating digoxin. Eur Heart J, 2006. 27(2): p. 127-9.
68. Aburai, N., et al., Pisiferdiol and pisiferic acid isolated from Chamaecyparis pisifera activate protein phosphatase 2C in vitro and induce caspase-3/7-dependent apoptosis via dephosphorylation of Bad in HL60 cells. Phytomedicine, 2010. 17(10): p. 782-8.
69. Feng, B., et al., beta-D-Glucosyl-(1-4)-alpha-L-thevetosides of 17beta-digitoxigenin from seeds of Cerbera manghas L. induces apoptosis in human hepatocellular carcinoma HepG2 cells. Exp Toxicol Pathol, 2012. 64(5): p. 403-10.
70. Wang, G.F., et al., Tanghinigenin from seeds of Cerbera manghas L. induces apoptosis in human promyelocytic leukemia HL-60 cells. Environ Toxicol Pharmacol, 2010. 30(1): p. 31-6.
71. Yang, X.J., et al., A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One, 2013. 8(4): p. e61801.
72. Morton, C.L. and P.J. Houghton, Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc, 2007. 2(2): p. 247-50.
73. Kerbel, R.S., Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther, 2003. 2(4 Suppl 1): p. S134-9.