簡易檢索 / 詳目顯示

研究生: 徐國庭
論文名稱: 陰離子型分散劑的合成及對鈦酸鋇漿體分散性質的影響
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 鈦酸鋇合成分散鋇離子溶出共聚物
論文種類: 學術論文
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鈦酸鋇電子陶瓷的製程,要得到穩定性高且分散良好的漿料必須添加分散劑。本篇論文主要是合成陰離子型共聚物聚丙烯醯胺-co-3-18烷基-聚乙二醇-羰基丙烯酸,Poly (acrylamide-co-3-octadecoxy poly (ethylene glycol) carbonyl acrylic acid) (POPCA),探討共聚物中分子量 (Mw) 對於鈦酸鋇水系漿體分散性質的影響。
    合成之POPCA以1H-NMR及IR光譜確認其結構,並利用GPC測定其分子量,使用電位滴定儀測量其單體比例及解離率。添加POPCA對於鈦酸鋇漿體穩定性的影響,主要研究方法有流變行為、沈降體積及粒徑分佈,並利用界達電位及吸附量等實驗來解釋;另外以ICP-MS來測量鈦酸鋇漿體Ba2+的溶出量。實驗結果發現隨著添加共聚物的分子量的下降,鈦酸鋇漿體有較佳的穩定性,胚體有較高的胚體密度。POPCA (14) (1.4×104)有最佳的分散效果,原因是吸附此聚合物的BT粒子有最大的負界達電位。最後添加POPCA能減少漿體中鋇離子的溶出。

    第一章 緒論..............................................................................................1 1-1 前言.....................................................................................................1 1-2 研究目的.............................................................................................1 第二章 文獻回顧......................................................................................2 2-1 分散原理.............................................................................................2 2-1-1 粒子的特性.....................................................................................2 2-1-2 膠體粒子表面間的作用力.............................................................2 2-1-3 分散機構.........................................................................................5 2-2 吸附原理.............................................................................................5 2-3 鈦酸鋇粉末.........................................................................................7 2-3-1 鈦酸鋇粉末之簡介.........................................................................7 2-3-2 鈦酸鋇粉末之相圖及結構.............................................................7 2-4 粉體分散糸統穩定性分析之文獻探討.............................................8 2-5 分散效果的評估方法.......................................................................10 2-5-1 分散劑的添加...............................................................................10 2-5-2 分散系統的流變性質.................................................................. 10 2-5-3 吸附行為........................................................................................11 2-5-4 沉降實驗........................................................................................11 2-5-5 粒徑大小.......................................................................................12 2-5-6 界達電位.......................................................................................12 2-6-7 鋇離子溶出...................................................................................13 2-5-8 介電性質.......................................................................................14 第三章 聚合物之合成與實驗流程......................................................21 3-1 實驗流程...........................................................................................21 3-2 實驗方法.. ........................................................................................21 3-2-1 陰離子型聚合物POPCA之合成..................................................21 3-2-2 聚合物之結構鑑定及性質分析...................................................21 3-2-3 聚合物對BT漿體之分散效果分析.............................................22 3-3 實驗材料與實驗設備.......................................................................22 3-3-1鈦酸鋇 (BT) 粉末.........................................................................22 3-3-2藥品.................................................................................................22 3-3-3實驗設備.........................................................................................23 3-4 聚合物之合成...................................................................................24 3-5 BT粉末晶相分析..............................................................................25 3-6 高分子結構鑑定及性質分析...........................................................26 3-6-1核磁共振 (1H-NMR) 光譜分析...................................................26 3-6-2 紅外線 (IR) 光譜分析.................................................................26 3-6-3聚合單體比例分析.........................................................................26 3-6-4 凝膠滲透層析 (GPC) 分析.........................................................26 3-6-5 聚合物固含量測量.......................................................................27 3-6-6 聚合物解離率的量測...................................................................27 3-7 聚合物對鈦酸鋇漿體之分散性質分析...........................................27 3-7-1 鈦酸鋇 (BT) 漿體的配製............................................................27 3-7-2 流變性質量測...............................................................................28 3-7-3 吸附量的量測...............................................................................28 3-7-4 沈降體積量測...............................................................................29 3-7-5 粒徑分佈量測...............................................................................29 3-7-6 界達電位量測...............................................................................29 3-7-7胚體密度........................................................................................29 3-7-7.1 生胚密度....................................................................................29 3-7-7.2 燒結密度....................................................................................30 3-7-8鋇離子溶出量.................................................................................31 3-7-9介電常數與介電損失.....................................................................31 3-7-10微結構分析...................................................................................32 第四章 聚合物之性質分析....................................................................36 4-1 聚合物之結構分析...........................................................................36 4-2 聚合物單體比例...............................................................................36 4-3 聚合物之分子量...............................................................................37 4-4聚合物在不同pH值之解離率..........................................................37 第五章 漿體分散之性質分析................................................................44 5-1 聚合物分子量對BT漿體黏度的影響.............................................44 5-2 聚合物對BT粒子吸附行為的影響.................................................45 5-3 聚合物對BT漿體粒徑分佈的影響.................................................47 5-4 聚合物對BT漿體沉降體的影響.....................................................48 5-5 聚合物對鈦散鋇漿體界達電位的影響...........................................49 5-6 聚合物對BT胚體密度的影響.........................................................50 5-7 聚合物對鈦散鋇漿體鋇離子溶出的影響.......................................51 5-8 聚合物對BT胚體之介電性質的影響.............................................52 5-9 聚合物對BT微結構的影響.............................................................53 第六章 結論............................................................................................78 參考資料..................................................................................................80

    參考資料
    [1] 吳杏旋, 添加陰離子型分散劑之鈦酸鋇漿體在不同pH值下的分散行為, 國立台灣師範大學化學研究所碩士論文, 2004.

    [2] J.A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc. 83(2000) 2341-2359.

    [3] R.G. Horn, Surface forces and their action in ceramic materials, J. Am. Ceram. Soc. 73(1990) 1117-1135.

    [4] J. Davies, J.G.P. Binner, The role of ammonium polyacrylate in dispersing concentrated alumina suspensions, J. Eur. Ceram. Soc 20(2000) 1539-1553.

    [5] 陳志豪, 高分子分散劑的合成以及對於鈦酸鋇粉末的分散性質, 國立台灣師範大學化學研究所碩士論文, 2005.

    [6] K.L. Ying, K.C. Hsu, W.C.J. Wei, An amphoteric water soluble copolymer. Ⅱ. effect of its molecular weight on the dispersion of barium titanate in water., J. Appl. Polym. Sci. 100(2006) 886-891.

    [7] B.Y. Yu, W.C.J. Wei, K.C. Hsu, Study of processing adsorption mechanism of amphoteric polyelectrolyte in BaTiO3 colloids suspension., J. Cream. Pro. Res. 5(2004) 163-170.

    [8] Z.-G. Shen, J.F. Chen, H.K. Zou, J. Yun, Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate, J. Colloid Interface. Sci 275(2004) 158-164.

    [9] J. Zhao, X. Wang, Z. Gui, L. Li, Dispersion of barium titanate with poly(acrylic acid-co-maleic acid) in aqueous media, Ceramics International 30(2004) 1985–1988.

    [10] D.H. Yoon, B.I. Lee, Effects on aqueous barium titanate tape properties of passivation of barium ion leaching by using dispersants, J. Eur. Ceram. Soc 24(2004) 3747–3752.

    [11] Y. Hu, S. Gong, D. Zhou, Stability of BaTiO3 aqueous suspensions with PVA-b-COOH, Materials Science and Engineering B 99(2003) 520-522.

    [12] X. Wang, B.I. Lee, L. Mann, Dispersion of barium titanate with polyaspartic acid in aqueous media, Colloids Surf. A: Physicochem. Eng. Aspects 202(2002) 71–80.

    [13] M.C.B. Lopez, B. Rand, F.L. Riley, Polymeric stabilisation of aqueous suspensions of barium titanate. part II: effect of polyelectrolyte concentration, J. Eur. Ceram. Soc 20(2000) 1587-1594.

    [14] H. Bouhamed, A. Magnin, S. Boufi, Alumina interaction with AMPS–MPEG random copolymers III. effect of PEG segment length on adsorption, electrokinetic and rheological behavior, J. Colloid Interface. Sci 298(2006) 238-247.

    [15] L. Saravanan, S. Subramanian, Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto alumina, J. Colloid Interface. Sci 284(2005) 363-377.

    [16] M.R.B. Romdhane, S. Baklouti, J. Bouaziz, T. Chartier, J.F. Baumard, Dispersion of Al2O3 concentrated suspensions with new molecules able to act as binder, J. Eur. Ceram. Soc 24(2004) 2723–2731.

    [17] C.P. Whitby, P.J. Scales, F. Grieser, T.W. Healy, G. Kirby, J.A. Lewis, C.F. Zukoski, PAA/PEO comb polymer effects on rheological properties and interparticle forces in aqueous silica suspensions, J. Colloid Interface. Sci 262(2003) 274-281.

    [18] S. Baklouti, M.R.B. Romdhane, S. Boufi, C. Pagnoux, T. Chartier, J.F. Baumard, Effect of copolymer dispersant structure on the properties of alumina suspensions, J. Eur. Ceram. Soc 23(2003) 905-911.

    [19] S. Boufi, S. Baklouti, C. Pagnoux, J.F. Baumard, Interaction of cationic and anionic polyelectrolyte with SiO2 and Al2O3 powders, J. Eur. Ceram. Soc 22(2002) 1493–1500.

    [20] J. Tsubaki, M. Kato, M. Miyazawa, T. Kuma, H. Mori, The effects of the concentration of a polymer dispersant on apparent viscosity and sedimentation behavior of dense slurries, Chemical Engineering Science 56(2001) 3021-3026.

    [21] A. Tsetsekou, C. Agrafiotis, A. Milias, Optimization of the rheological properties of alumina slurries for ceramic processing applications part I: slip-casting, J. Eur. Ceram. Soc 21(2001) 363-373.

    [22] Z.C. Chen, T.A. Ring, J. Lemaitre, Stabilization and processing of aqueous BaTiO, suspension with polyacrylic acid, J. Am. Ceram. Soc 75(1992) 3201-3208.

    [23] A.W.M.d. Laat, G.L.T.v.d. Heuvel, Molecular weight fractionation in the adsorption of polyacrylic acid salt onto BaTiO3, Colloids Surf. A: Physicochem. Eng. Aspects 98(1995) 53-59.

    [24] J.H. Jean, H.R. Wang, Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid), J. Am. Ceram. Soc 81[6](1998) 1589-1599.

    [25] D. Santhiya, S. Subramanian, K.A. Natarajan, S.G. Malghan, Surface chemical studies on the competitive adsorption of poly(acrylic acid) and Poly(vinyl alcohol) onto Alumina, J. Colloid Interface. Sci 216(1999) 143-153.

    [26] H. Kamiya, Y. Fukuda, Y. Suzuki, M. Tsukada, Effect of polymer dispersant structure on electrosteric interaction and dense alumina suspension behavior, J. Am. Ceram. Soc 82[12](1999) 3407-3412.

    [27] B.H. Lung, C.J Shih, M.H. Hon, Colloidal processing of titanium nitride with poly-(methacrylic acid) polyelectrolyte, Materials Chemistry and Physics 60(1999) 150-157.

    [28] H. Bouhamed, S. Boufi, A. Magnin, Alumina interaction with AMPS–MPEG random copolymers I. adsorption and electrokinetic behavior, J. Colloid Interface. Sci 261(2003) 264–272.

    [29] H. Bouhamed, S. Boufi, A. Magnin, Alumina interaction with AMPS-PEG random copolymer II. stability and rheological behavior, Colloids Surf. A: Physicochem. Eng. Aspects 253(2005) 145-153.

    [30] W.L. McCabe, J.C. Smith, P. Harriott, “Unit operations of Chemical Engineering Fifth Edition”, McGraw-Hill, N.Y., 1993.

    [31] L.C. Guo, Y. Zhang, N. Uchida, K. Uematsu, Influence of Temperature on Stability of Aqueous Alumina Slurry Containing Polyelectrolyte Dispersant, J. Eur. Ceram. Soc 17(1997) 345-350.

    [32] M.C.B. Lopez, B. Rand, F.L. Riley, Polymeric stabilisation of aqueous suspensions of barium titanate. Part I: Effect of pH, J. Eur. Ceram. Soc 20(2000) 1579-1586.

    [33] D.Santhiya, G. Nandini, S. Subramanian, K.A. Natarajan, S.G. Malghan, Effect of polymer molecular weight on the adsorption of polyacrylic acid at the alumina-water interface, Colloids Surf. A: Physicochem. Eng. Aspects 133(1998) 157-163.

    [34] M.R.B. Romdhane, S. Boufi, S. Baklouti, T. Chartier, J.F. Baumard, Dispersion of Al2O3 suspension with acrylic copolymers bearing carboxylic groups, Colloids Surf. A: Physicochem. Eng. Aspects 212(2003) 271-283.

    [35] Y. Liu, L. Gao, L. Yu, J. Guo, Adsorption of PBTCA on alumina surfaces and its influence on the fractal characteristics of sediments, J. Colloid Interface. Sci 227(2000) 164-170.

    [36] Y. Liu, L. Gao, Effect of 2-Phosphonobutane-1,2,4-tricarboxylic acid adsorption on the stability and rheological properties of aqueous nanosized 3-mol%-yttria-stabilized tetragonal-zirconia polycrystal suspensions, J. Am. Ceram. Soc 86[7](2003) 1106-1113.

    [37] G..Y. Carlos, B.R. Heberto, M. Froylan, Colloidal processing of BaTiO3 using ammonium polyacrylate as dispersant, Ceram. Int 26(2000) 609-616.

    [38] W.J. Tseng, S.Y. Li, Effect of polysaccharide polymer on sedimentation and rheological behavior of aqueous BaTiO3 suspensions, Journal of Materials Processing Technology 408-414 142(2003) 408-414.

    [39] C. Rattanakawin, R. Hogg, Aggregate size distributions in flocculation, Colloids Surf. A: Physicochem. Eng. Aspects 177(2001) 87-98.

    [40] Y. Liu, L. Gao, J. Sun, Effect of acrylic copolymer adsorption on the colloidal stability of a 3Y-TZP suspension, J. Eur. Ceram. Soc 22(2002) 863–871.

    [41] A. Degen, M. Kosec, Influence of pH and ionic impurities on the adsorption of poly(acrylic) dispersant onto a zinc oxide surface, J. Am. Ceram. Soc 86[12](2003) 2001-2010.

    [42] F. Shojai, A.B.A. Pettersson, T. Mantyla, J.B. Rosenholm, Electrostatic and electrosteric stabilization of aqueous slips of 3Y-ZrO2 powder, J. Eur. Ceram. Soc 20(2000) 277-283.

    [43] M.C.B. Lopez, B. Rand, F.L. Riley, The isoelectric point of BaTiO3, J. Eur. Ceram. Soc 20(2000) 107-118.

    [44] C.W. Chiang, J.H. Jean, Effects of barium dissolution on dispersing aqueous barium titanate suspensions, Materials Chemistry and Physics 80(2003) 647–655.

    [45] M.C.B. Lopez, B. Rand, F.L. Riley, The properties of aqueous phase suspensions of barium titanate, J. Eur. Ceram. Soc 17(1997) 281-287.

    [46] 應國良, 鈦酸鋇漿體分散劑的合成與應用, 國立台灣師範大學化學研究所碩士論文, 2003.

    [47] Reed, J. S., Principles of Ceramic Processing, Wiley interscience, 1995.

    [48] N. Das, H.S. Maiti, Effect of size distribution of the starting powder on the pore size and its distribution of tape cast alumina microporous membranes, J. Eur. Ceram. Soc 19(1999) 341-345.

    無法下載圖示 本全文未授權公開
    QR CODE