研究生: |
張禎玲 Chang, Chen-Ling |
---|---|
論文名稱: |
(一) 催化劑控制多樣性導向合成螺環/三取代四氫喹啉衍生物
(二) 多樣性導向策略合成螺環羥吲哚和環戊二烯[b]吲哚之衍生物 (一)Organobase-controlled construction of spiro- and 3-methylene-hydroquinoline-indane-1,3-diones (二) Synthesis of spiropentadiene indoline and phenylcyclopenta[b]indole via intramolecular Wittig reaction |
指導教授: |
林文偉
Lin, Wen-Wei |
口試委員: |
林文偉
Lin, Wen-Wei 姚清發 Yao, Ching-Fa 劉維民 Liu, Wei-Min 張永俊 Jang, Yeong-Jiunn |
口試日期: | 2023/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 325 |
中文關鍵詞: | 多樣性導向策略 、有機鹼調控 、1,4/1,6-加成反應 、1,3-nitrogen 重排 、螺戊二烯二氫吲哚 、苯基環戊二烯[b]吲哚 、分子內威悌反應 |
英文關鍵詞: | Diversity-oriented synthesis, 1,3-nitrogen rearrangement, 1,6-additionan, 1',4'-addition |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300816 |
論文種類: | 學術論文 |
相關次數: | 點閱:94 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分:
多樣性導向合成策略已成為製備各式化合物重要技術之一,透過試劑、手法及時間的調控,可快速且具高度選擇性的建構複雜骨架化合物。近年來,使用此策略的方法日新月異,並且廣泛運用在藥物分子的製備上。為延續多樣性導向合成策略,本文報導一種透過有機鹼催化劑及溶劑調整的方式,建構螺氫喹啉-茚二酮及3-亞甲基氫喹啉-茚二酮衍生物。在DMAP 和 TMG 鹼催化試劑下,利用起始物鄰甲苯磺醯氨基苯基取代的對醌甲基和芳基烯丙基-茚滿二酮經由aza-1,4/1,6-加成可調控的形成動力學及熱力學產物。最後在控制實驗及機制研究顯示,於TMG系統中會優先生成1,4-加成螺氫喹啉-茚滿二酮中間體,再經逆反應/1,6-加成/1,3-nitrogen重排/vinylogous 1,6-加成形成3-亞甲基氫喹啉-茚二酮衍生物。並對一鍋化、克級反應及其他雜芳基烯基底物進行探討。
第二部分:
為銜接以及擴展過去實驗室所發展的有機膦試劑多樣性導向,本文我們發展出利用試劑的添加順序、時間的調控,順利建構螺戊二烯二氫吲哚產物及苯基環戊二烯[b]吲哚衍生物。目前根據初步機制推測,在反應前期,膦試劑會具有選擇性地進行1,6-或1’,4’-加成反應。在1,6-加成反應途徑會優先生成關鍵中間體betaine七元環,接續再進行開環/δ-C-醯基轉移/分子內威悌反應後,可獲得螺環產物。而另一途徑則是透過膦試劑添加時間的控制,逕而選擇進行1’,4’-加成反應並產生不同的betaine中間體,接著進行β-C-醯基轉移/分子內威悌反應/異構化後,得苯基環戊二烯[b]吲哚衍生物。
Part I
Diversity-oriented synthesis strategies have emerged as important techniques for the preparation of various compounds, enabling rapid and highly selective construction of complex scaffolds. In recent years, methods utilizing this strategy have evolved rapidly and found extensive application in the synthesis of pharmaceutical molecules. In this study, we report a methodology for the construction of spiro-hydroquinone-quinone and 3-methylhydroquinone-quinone derivatives through the use of organic base catalysts and solvent tuning. In the presence of the catalyst such as DMAP or TMG, starting materials consisting of substituted para-quinone methides bearing para-toluenesulfonyl amide groups and arylallylidene- indanediones were subjected to a controlled aza-1,4 or 1,6-addition process, resulting in the formation of kinetically or thermodynamically controlled products, respectively. Further investigations, including control experiments and mechanistic studies, revealed that the TMG system favored the formation of the 1,4-addition spiro-hydroquinone-quinone intermediate, followed by a retro-addition/1,6-addition/1,3-nitrogen rearrangement/vinylogous 1,6-addition cascade to produce the 3-methylhydroquinone-quinone derivatives. The methodology was also explored for one-pot, gram-scale reactions, as well as for various α, β, γ, δ-unsaturated carbonyl compound.
Part II
The diversity-oriented synthesis (DOS) strategy holds significant power in the field of organic synthesis, allowing for precise control of chemoselectivity through manipulation of reaction conditions. Consequently, DOS is widely employed in the synthesis of pharmaceutical drugs. In our previous work published in 2020, we successfully employed DOS to synthesize spiropentadiene pyrazolones and 1H-oxepino[2,3-c] pyrazoles. Building upon our interest in this area of research, we present a new study focusing on the phosphine-mediated reaction of α, β, γ, δ-unsaturated oxindole with multiple conjugation. This investigation led to the synthesis of spiropentadiene indolines through a tandem phospha-1,6-addition/δ-C-acylation/intramolecular Wittig reaction. Additionally, by adjusting the addition sequence of reactants within specific time intervals, various betaine intermediates were generated, giving rise to distinct products. The mechanistic analysis suggests that these transformations are driven by phospha-1’,4’-addition/γ-C-acylation/intramolecular Wittig reaction.
1. Schreiber, S. L. Science 2000, 287, 1964-1969.
2. Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867-3870.
3. Bose, D. S.; Idrees, M.; Jakka, N. M.; Rao, J. V. J. Comb. Chem. 2010, 12, 100-110.
4. Lenci, E.; Trabocchi, A. Eur. J. Org.Chem. 2022, 29, e20220057.
5. a. Afarinkia, K.; Bahar, A. Tetrahedron: Asymmetry 2005, 16, 1239-1287.; b. Compain, P.; Martin, O. R. Curr. Top. Med. Chem. 2003, 3, 541-560.; c. Greimel, P.; Spreitz, J.; Sttz, A. E.; Wrodnigg, T. M. Curr. Top. Med. Chem. 2003, 3, 513-523.; d. Asano, N. Glycobiology 2003, 13,93R-104R
6. Aravind, A.; Sankar, M. G.; Varghese, B.; Baskaran, S. J. Org. Chem. 2009, 74, 2858-2861.
7. Aravind, A.; Kumar, P.S.; Sankar, M. G.; Baskaran, S. Eur. J. Org. Chem. 2011, 34, 6980-6988.
8. a. Hoepping, A.; Diekers, M.; Deuther-Conrad, W.; Scheunemann, M.; Fischer, S.; Hiller, A.; Wegner, F. Steinbach, J.; Brust, P. Bioorg. Med. Chem. 2008, 16, 1184-1194.; b. Wawer, I.; Pisklak, M.; Chilmonczyk, Z. J. Pharm. Biomed. Anal. 2005, 38, 865-870.; c. Singh, S. K.; Reddy, P. G.; Rao, K. S.; Lohray, B. B.; Misra, P.; Rajjak, S. A.; Rao, Y. K.; Venkatewarlu, A. Bioorg. Med. Chem. Lett. 2004, 14, 499-504.
9. Chebanov, V. A.; Saraev, V.E.; Shishkina, S. V.; Shishkin, O.V.; Musatov, V. I.; Desenko, S. M. Eur. J. Org. Chem. 2012, 28, 5515-5524.
10. Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanama, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1684-1688.
11. Wang, M.; Tseng, P.-Y.; Chi, W.-J.; Suresh, S.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Adv. Synth. Catal. 2020, 362, 3407-3415.
12. Curti, C.; Battistini, L.; Sartori, A.; Zanardi, F. Chem. Rev. 2020, 120, 2448-2612.
13. Izquierdo, J.; Orue, A.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634-10637.
14. Lin, Y.; Hou, X.-Q.; Li, B.-Y.; Du, D.-M. Adv. Synth. Catal. 2020, 362, 5728-5735.
15. Li, Y.; Luo, H.; Tang, Z.; Li, Y.; Du, L.; Xin, X.; Li, S.; Li, B. Org. Lett. 2021, 23, 6450-6454.
16. Hatano, M.; Mizuno, M.; Ishihara, K. Org. Lett. 2016, 18, 4462-4465.
17. Parra, A.; Tortosa, M. Chem. Cat. Chem. 2015, 7,1524-1526.
18. Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743-1778.
19. Yuan, Z.; Liu, L.; Pan, R.; Yao, H. Lin, A. J. Org. Chem. 2017, 82, 8743-8751.
20. Lima, C. G. S.; Pauli, F. P.; Costa, D. C. S.; Souza, A. S.; Forezi, L. S. M.; Ferreira, V.F.; Silva, F. C. Eur. J. Org. Chem. 2020, 18, 2650-2692.
21. Lv, H.; Jia, W.-Q.; Sun, L.-H.; Ye, S. Angew. Chem. Int. Ed. 2013, 52, 8607- 8610.
22. Li, W.; Yuan, H.; Liu, Z.; Zhang, Z.; Cheng, Y.; Li, P. Adv. Synth. Catal. 2018, 360, 2460-2464.
23. Si, W.; Xu, F.; Liu, Z.; Song, R.; Lv, J. Tetrahedron Letters. 2020, 61, 152171-152176.
24. Luo, F. Dong, H.; Ren, W.; Wang, Y. Org. Lett. 2022, 24, 7727-7731.
25. Tian, X.; Zhang, Y.; Ren, W.; Wang, Y. Org. Chem. Front. 2022, 9, 615-626.
26. Zhou, S.-J.; Cheng, X.; Hu, C.-X.; Xu, G.-Y.; Xiao, W.-J.; Xuan, J. Sci China Chem. 2020, 64, 61-65.
27. Wang, J.; Rong, Q.; Zhao, L.; Pan, X.; Zhao, L.; Zhao, K.; Hu, L. J. Org. Chem. 2020, 85, 11240-11249.
28. Xie, C.; Smaligo, A.J.; Song, X.-R.; Kwon, O. ACS Cent. Sci. 2021, 7, 536-558.
29. Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202-208.
30. a. Guo, H.; Fan, Y.-C.; Sun, Z.; Wu, Y.; Kwon, O. Chem. Rev. 2018, 118, 10049-10293.; b. Ganat, J.-P.; Ayad, T.; Ratovelomanana-Vidal, V. Chem. Rev. 2014, 114, 2824-2880.
31. a. Wang, W.-L.; Yao, D.-Y.; Gu, M.; Fan, M.-Z.; Li, J.-Y.; Xing, Y.-C.; Nan, F.-J. Bioorg. Med. Chem. Lett. 2005, 15, 5284-5287.; b. Phuwapraisirisan, P.; Matsunaga, S.; Soest, R.W. M.; Fusetani, N. J. Nat. Prod. 2002, 65, 942-943.
32. Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das, U.; Lin, W. Chem. Commun. 2013, 49, 10266-10268.
33. Craig, R. A.; Stoltz, B. M.; Chem. Rev. 2017, 117, 7878-7909.
34. Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biomol. Chem. 2013, 11, 5156-5161.
35. Mani Chandrika, K. V. S.; Sharma, S Bioorg. Med. Chem. 2020, 28, 115398-115415.
36. Vagh, S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Lin, W. Org. Lett. 2021, 23, 842-846.
37. Vagh, S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Chen, Y.-R.; Lin, W. Adv. Synth. Catal. 2021. 363, 5429-5435.
38. Fan, Y.-S.; Das, U.; Hsiao, M.-Y.; Liu, M.-S.; Lin, W. J. Org. Chem. 2014, 79, 11567-11582.
39. Marchese, A.D.; Larin, E.M.; Mirabi, B.; Lautens, M. Acc. Chem. Res. 2020, 53, 1605-1619.
40. Cao, Z.-Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 51, 1443-1454.
41. Park, A.; Moore, R. E.; Patterson, G. M. L. Tetrahedron Lett. 1992, 33, 3257-3260.
42. Fernandez, L. S.; Buchanan, M. S.; Carroll, A. R.; Feng, Y.-J.; Quinn, R. J.; Avery, V. M. Org. Lett. 2009, 11, 329-332.
43. a. Liu, J.-F.; Jiang, Z.-Y.; Wang, R.-R.; Zheng, Y.-T.; Chen, J.-J.; Zhang, X.-M.; Ma, Y.-B. Org. Lett. 2007, 9, 4127-4129.; b. Vepsäläinen, J. J.; Auriola, S.; Tukiainen, M.; Ropponen, N.; Callaway, J. C. Planta Med. 2005, 71, 1053-1057.
44. Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468-12469.
45. Dhiman, S.; Ramasastry, S. S. V. Chem. Commun., 2015, 51, 557-560.
46. Liu, J . Chen, M. Zhang, L.; Liu, Y. Chem. Eur. J. 2015, 21, 1009-1013.
47. Gandhi, S.; Baire, B. J. Org. Chem. 2019, 84, 3904-3918.
48. Zhang, Y.-B.; Li, B.-S. Xu, G.-J.; Sun, W.; Sun, M. Org. Lett. 2023, 25, 3922-3926.
49. Yu, B.; Yu, D.-Q.; Liu, H.-M. Eur. J. Med. Chem. 2015, 97, 673-698.
50. Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F. ACS Catal. 2014, 4, 743-762.
51. Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org.Biomol.Chem. 2012, 10, 5165-5181.
52. Peng, J.; Huang, X.; Jiang, L.; Cui, H.-L.; Chen, Y.-C. Org. Lett. 2011, 13, 4584-4587.
53. Tang, X.; Wu, Y.; Jiang, J.; Fang, H.; Zhou, W.-J.; Huang, W.; Zhan, G. Org. Lett. 2021, 23, 8937-8941.
54. Chen, Y.; Cui, B.-D.; Bai, M.; Han, W.-Y.; Wan, N.-W.; Chen, Y.-Z. Tetrahedron. 2019, 75, 2971-2979.
55. Warghude, P. K.; Sabale, A. S.; Dixit, R.; Vanka, K.; Bhat, R. G. Org. Biomol. Chem., 2021, 19, 4338-4345.
56. Khairnar, P.; Wu, C.-Y.; Lin, Y.-F.; Edukondalu, A. Chen, Y.-R.; Lin, W. Org. Lett. 2020, 22, 4760-4765