研究生: |
陳一清 Yi-Ching CHEN |
---|---|
論文名稱: |
使用銦預流處理製造具備溫度穩定與抑制效率 下降特性之氮化銦鎵綠光發光二極體 Stable Temperature Characteristics and Suppression of Efficiency Droop in InGaN Green Light-Emitting Diodes Using Pre-TMIn Flow Treatment |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 發光二極體 、效率下降 、銦預流 |
英文關鍵詞: | Light Emitting Diode, Efficiency droop, In preflow |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用銦預流處理來製造氮化銦鎵綠光發光二極體,並藉著實驗結果瞭解元件具備效率改進與對溫度變化穩定之特性。藉著這種銦預流處理技術,若使用效率方程式(rate equation)作實驗數據擬合,將獲得較高的輻射復合係數(B=3.34*10^-11 cm3*s-1 ),同時也對應內部量子效率(internal quantum efficiency, IQE)可以提昇9.2%,並且對注入載子來說漏電流路徑有顯著的減少;另一方面,若使用Shockley方程式針對變溫77K-400K之電壓電流特性做擬合,亦可以發現銦預流處理可以抑制缺陷所造成之漏電流路徑。更重要的是,銦預流處理技術明顯減緩綠光發光二極體之內部量子效率(external quantum efficiency, EQE)隨溫度變化與效率下降的現象。此種改善被認為是藉著銦預流處理在磊晶時優先形成銦富集點(In-rich-dot),這些富含銦元素之量子點能有效抑制線差排會捕捉激子之特性,以及注入載子隨溫度提昇溢流出主動區之現象;此外,藉著模擬量子井中存在銦富集區域之結構,更驗證銦預留處理改善效率下降之可信度。
We present experimental results on the improved performance and high stable temperature characteristics of the InGaN green light-emitting diode (LED) with pre-trimethlyindium (pre-TMIn) flow treatment. By using pre-TMIn flow treatment, a relatively large radiative coefficient (B=3.34*10^-11 cm3*s-1 ) corresponding to a 9.2% enhancement in the internal quantum efficiency, as well as a significant reduction of leakage paths for injected carriers, was obtained. On the other hand, by using Shockley equation to fit the I-V curve from 77K to 400K, we find that pre-TMIn flow treatment can suppress the defect-assisted leakage path. Most important, the pre-TMIn flow treatment evidently reduces the dependence of the external quantum efficiency on temperature and efficiency droop of green LEDs. The improvement is thought to be attributable to the preferential formation of In-rich dots upon pre-TMIn flow treatment, which effectively suppresses the trapping of excitons by threading dislocations and the overflowing of injected carriers outside the active regions at elevated temperatures. In addition, by In-rich dots simulation in QWs, we can verify the reliability of our experiment results.
[1]參考美國2007能源獨立和安全法案全文:http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf
[2]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou,G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE Journal of Display Technology, vol. 3, pp. 160-175, 2007.
[3]High-Brightness LED Market Review and Forecast 2009, Strategies Unlimited, USA, September, 2009.
[4]A. Michiue, T. Miyoshi, T. Yanamoto, T. Kozaki, S. Nagahama, Y. Narukawa, M. Sano, T. Yamada, and T. Mukai, “Recent development of nitride LEDs and LDs,” Proc. SPIE, vol. 7216, p.72161Z, 2009.
[5]參考網站:http://www.cree.com/press/press_detail.asp?i=1265232091259
[6]T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 3976–3981, 1999.
[7]S.-J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, “The effects of in flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 40, pp. L371–L373, 2001.
[8]M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C.-H. Hong, and E.-K. Suh, “Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth,” Jpn. J. Appl. Phys., vol. 47, pp. 839–842, 2008.
[9]W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell System Technical Journal, vol. 28, No. 3, pp. 435-489, 1949.
[10]W. Shockley, Electrons and Holes in Semiconductors, with Applications to Transistor Electronics., New York: Van Nostrand, 1950.
[11]Jay M. Shah, Y.-L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, no. 4, pp. 2627-2630, 2003.
[12]Di Zhu, Jiuru Xu, Ahmed N. Noemaun, Jong Kyu Kim, E. Fred Schubert, Mary H. Crawford, and Daniel D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 081113, 2009.
[13]X. A. Cao, J. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Yan, “Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates,” Appl. Phys. Lett., vol. 85, pp. 7-9, 2004.
[14]S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys., vol. 87, p. 965, 2000.
[15]J. L. Sanchez-Rojas, J. A. Garrido, and E. Muooz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices,” Phys. Rev. B, vol. 61, p. 2773, 2000.
[16]F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, p. 10024, 1997
[17]I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., vol. 94, pp. 3675–3696, 2003.
[18]A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” J. Appl. Phys., vol. 82, pp. 2833–2839, 1997
[19]F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, pp. R10024–10027, 1997.
[20]J. G. Gualtieri, J. A. Kosinski, A. Ballato, “Piezoelectric Materials for Acoustic Wave Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol. 41, pp. 53–59, 1994
[21]A. E. Romanov, P. Waltereit, and J. S. Speck, “Buried stressors in nitride semiconductors: Influence on electronic properties,” J. Appl. Phys., vol. 97, pp.043708-1–043708-13, 2005.
[22]S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2006-2008, 1998.
[23]P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Appl. Phys. Lett., vol. 75, pp. 2241-2243, 1999.
[24]P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865-868, 2000.
[25]Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, and E. Fred Schubert, Joachim Piprek, Yongjo Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 183507, 2007.
[26]Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, and E. Fred Schubert, Daniel D. Koleske, Mary H. Crawford, Stephen R. Lee, Arthur J. Fischer, Gerald Thaler, and Michael A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 231114, 2007.
[27]N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, pp. 243506, 2007.
[28]J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett., vol. 92, p. 261103, 2008.
[29]I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” phys. stat. sol. (a), vol. 204, pp. 227-230, 2007.
[30]A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, “Performance of High-Power AlInGaN Light Emitting Diodes,” phys. stat. sol. (a), vol. 188, no. 1, pp. 15-21, 2001.
[31]Y. Yang, X. A. Cao, and C. H. Yan, “Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes,” IEEE Trans. Electron Devices, vol. 55, pp. 1771-1775, 2008.
[32]X. A. Cao, Y. Yang, and H. Guo, “On the origin of efficiency roll-off in InGaN-based light-emitting diodes,” J. Appl. Phys., vol. 104, p. 093108, 2008.
[33]M. K. Behbehani, E. L. Piner, S. X. Liu, N. A. EI-Masry, and S. M. Bedair, Appl. Phys. Lett., vol. 75, p. 2202, 1999.
[34]Y. T. Moon, D. J. Kim, J. S. Park, J. T. Oh, J. M. Lee, Y. W. Ok, H. Kim, and S. J. Park, Appl. Phys. Lett., vol. 79, p. 599, 2001.
[35]H. K. Cho, J. Y. Lee, N. Sharma, C. J. Humphreys, G. M. Yang, C. S. Kim, J. H. Song, and P. W. Yu, Appl. Phys. Lett., vol. 79, p. 2594, 2001.
[36]M. Takeguchi, M. R. McCartney, and D. J. Smith, Appl. Phys. Lett., vol. 84, p. 2103, 2004.
[37]I. K. Park, M. K. Kwon, S. H. Baek, Y. W. Ok, T. Y. Seong, S. J. Park, Y. S. Moon, and D. J. Kim, Appl. Phys. Lett., vol. 87, p. 061906, 2005.
[38]Chen J, Wang J F, Wang H, Zhu J J, Zhang S M, Zhao D G, Jiang D S, Yang H, Jahn U and Ploog K H ,” Measurement of threading dislocation densities in GaN by wet chemical etching,” Semicond. Sci. Technol., vol. 21, p. 1229, 2006.
[39]S. Yamaguchi, M. Kariya, S. Nitta, H. Amano, and I. Akasaki, “The effect of isoelectronic in-doping on the structural and optical properties of (Al)GaN grown by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 39, pp. 2385–2388, 2000.
[40]Li Y, Zhao W, Xia Y, Zhu M, Senawiratne J, Detchprohm T, Schubert E F and Wetzel C, “Temperature dependence of the quantum efficiency in green light emitting diode dies,” Phys. Status Solidi, vol. 4, pp. 2784-2787, 2007.
[41]Zhu D., Xu J., Noemaun A. N., Kim J. K., Schubert E. F.,Crawford M. H. and Koleske D. D., “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 081113, 2009.
[42]Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett., vol. 94, no. Art. 111109, 2009.
[43]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, no. Art. 141101, 2007.
[44]K. Watanabe, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, T. Yamazaki, N. Nakanishi, and M. Shiojiri, “Formation and structure of inverted hexagonal pyramid defects in multiple quantum wells InGaN/ GaN,” Appl. Phys. Lett., vol. 82, no. Art. 718, 2003.
[45]Cao X. A. and LeBoeuf S. F. “Current and Temperature Dependent Characteristics of Deep-Ultraviolet Light-Emitting Diodes,” IEEE Trans. Electron Devices, vol. 54, p. 3414, 2007.
[46]Wang C. H., Chen J. R., Chiu C. H., Kuo H. C., Lee Y. L., Lu T. C. and Wang S. C. “Temperature-Dependent Electroluminescence Efficiency in Blue InGaN–GaN Light-Emitting Diodes With Different Well Widths,” IEEE Photon. Technol. Lett., vol. 22, pp. 236–238, 2010.
[47]Park S-H, Ahn D and Kim J-W “High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 041109, 2009.
[48]Zhao H., Liu G., Li X.-H., Hiang G. S., Poplawsky J. D., Penn S. T., Dierolf V. and Tansu N. “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett., vol .95, p. 061104, 2009.