研究生: |
林凱晨 LIN, Kai-Chen |
---|---|
論文名稱: |
ZSM-5沸石擔載鐵基雙金屬觸媒在一氧化氮選擇性催化還原活性:酸性及金屬負載量效應研究 Performance of ZSM-5 Supported Fe-Based Bimetallic Catalysts on Selective Catalytic Reduction of NO: Effects of Acidity and Metal Loading |
指導教授: |
劉尚斌
Liu, Shang-Bin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 選擇性催化還原 、ZSM-5沸石擔體 、去硝效應 、固態31P核磁共振光譜 、三甲基磷氧 、酸協同效應 |
英文關鍵詞: | Selective catalytic reduction (SCR), ZSM-5 zeolite support, DeNOx process, Solid-state 31P NMR spectroscopy, Trimethylphosphine oxide, Acid synergy effect |
論文種類: | 學術論文 |
相關次數: | 點閱:107 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮氧化物去除(DeNOx)技術的研發深受日益嚴重的空氣污染以及更嚴格的環保規範而更受重視。本研究針對一系列鐵基雙金屬負載Fe-Z-M2 (Z = ZSM-5沸石;矽/鋁比值= 25)觸媒在氨氣選擇性催化還原(NH3-SCR)反應之催化效能進行系統性的探討。吾人利用各種分析及光譜實驗技術,對各DeNOx觸媒樣品進行物化特性鑑定,特別是利用本實驗室所開發之31P-TMPO MAS NMR酸性鑑定技術,深入探討各觸媒的酸種類、強度、酸量分佈等特性與SCR反應效能的關聯性。此外,本論文亦著重在探討金屬負載量及反應溫度對SCR效能的影響。在固定觸媒第一金屬(Fe)及其負載量下,隨第二金屬負載量(M2 = Cu、Ce、Pr、Cr)的增加,更多的超強路易士(L)酸亦隨之產生,並引發B/L酸協同效應而助長SCR反應效能。最後,吾人亦針對各系列觸媒在SCR反應前後之酸性特性變化及其對SCR反應活性進行研究。研究結果顯示,鐵基雙金屬負載Fe-Z-M2觸媒在適當的反應溫度區間(200 ~ 450 oC)有極佳的NH3-SCR效能,其NO轉化率可高達90%,故具備實際工業應用潛力。
Owing to the increasing severity in air pollution and stringent environment specifications, the R&D of nitrogen oxides removal (DeNOx) technology have drawn considerable attention. The present study aims at the syntheses of various iron-based Fe-Z-M2 (Z = ZSM-5 zeolite; Si/Al = 25) catalysts and their catalytic performances during selective catalytic reduction of ammonia (NH3-SCR).。The physicochemical properties of these DeNOx catalysts were characterized by a variety of different techniques. Their acid features (type, strength, and concentration and distribution) were probed by 31P-TMPO MAS NMR technique developed in this laboraty. In particular, the effects of primary and secondary metal loadings and reaction temperature on SCR activity were investigated. For a given priminary metal (Fe) loading, an increasing dosage of the secondary metal (M2 = Cu、Ce、Pr、Cr) tends to provoke formation of strong Lewis acid sites, which are favorable fot the Brønsted-Lewis acid synergy during the SCR reaction. Furthermore, correlations between the acid features of various catalysts with SCR activity were also investigated. It is found that, the Fe-based bimettalic Fe-Z-M2 catalysts exhibit superior NH3-SCR performance over the desirable temperature range of 200450 oC, leading to a NO conversion of 90%, rendering perspective and practical industrial applications for DeNOx.
[1] J. D. Spengler, K. Sexton, Science 1983, 221, 9-17.
[2] P. L. Naeher, M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, K. R. Smith, Inhal. Toxicol. 2007, 19, 67-106.
[3] Report on the state of the environment in Poland 2008, Environmental. Monitoring Library, Chief Environmental Protection Inspectorate, 2010.
[4] U. Deka, I. Lezcano-Gonzalez, B. M. Weckhuysen, A. M. Beale, ACS Catal. 2013, 3, 413-427.
[5] V. I. PaÃrvulescua, P. Grange, B. Delmon, Catal. Today 1998, 46, 233-316.
[6] ToxFAQsTM for Nitrogen Oxides, Agency for Toxic Substances and Disease Registry (ATSDR), 2002.
[7] J. H. Seinfeld, Science 1989, 243, 745-752.
[8] F. Kasuya, P. Glarborg, J. E. Johnsson, K. Dam-Johansen, Chem. Eng. Sci. 1995, 50, 1455-1466.
[9] Available and emerging technologies for reducing greenhouse gas emissions from the nitric acid production industry, Sector Policies and Programs Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA), December 2010.
[10] R. Atkinson, Atmospheric transformations of automotive emissions. in Air Pollution, the Automobile, and Public Health, A. Y. Watson, R. R. Bates, D. Kennedy (Eds), National Academy Press, Washington, D. C., 1988.
[11] P. Forzatti, Appl. Catal. A: Gen. 2001, 222, 221-236.
[12] S. H. Begum, Ph.D. Thesis: Characterization and performances of nanosized bi-metallic Fe-based zeolite catalysts during selective catalytic reduction (SCR) of NO by NH3, Department of Chemistry, Natinal Taiwan University, Taiwan, December 2013.
[13] A. Ma, W. Grünert, Chem. Commun. 1999, 1, 71-72.
[14] J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, J. Catal. 2005, 232, 318-334.
[15] D. Wang, L. Zhang, K. Kamasamudram, W. S. Epling, ACS Catal. 2013, 3, 871-881.
[16] C. H. Baerlocher, L. B. McCusker, D. H. Olson, in Atlas of Zeolite Framework Types, 7th Ed., 2007.
[17] R. R. Mukti, Ph.D. Thesis: Sorption and transport of aromatic over MFI zeolites, Technische Universität München, June 2007.
[18] D. W. Breck, in Zeolite molecular sieves, Wiley, New York, 1974.
[19] 吳榮宗,工業觸媒概論,國興出版社,1989.
[20] H. Y. Huang, R. Q. Long, R. T. Yang, Appl. Catal. A: Gen. 2002, 235, 241-251.
[21] J. Eng, C. H. Bartholomew, J. Catal. 1997, 171, 27-44.
[22] S. A. Stevenson, J. C. Vartuli, C. F. Brooks, J. Catal. 2000, 190, 228-239.
[23] S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, J. Catal. 2009, 268, 297-306.
[24] R. J. Gillespie, Acc. Chem. Res. 1968, 1, 202-209.
[25] 楊瑞郎,碩士論文,實作評量工具編製之研究—以高三化學「酸鹼滴定」,高雄師範大學科學教育研究所,2002年6月。
[26] K. Arata, Adv. Catal. 1990, 37, 165-211.
[27] W. K. Hall, Acc. Chem. Res. 1975, 8, 257-263.
[28] A. Zheng, S. J. Huang, S. B. Liu, F. Deng, Phys. Chem. Chem. Phys. 2011, 13, 14889-14901.
[29] A. Zheng, F. Deng, S. B. Liu, Ann. Rep. NMR Spectrosc. 2014, 81, 47-108.
[30] Q. Zhao, W. H. Chen, S. J. Huang, Y. C. Wu, H. K. Lee, S. B. Liu, J. Phys. Chem. B 2002, 106, 4462-4469.
[31] W. P. Rothwell, W. Shen, J. H. Lunsford J. Am. Chem. Soc. 1984, 106, 2452-2453.
[32] J. H. Lunsford, Top. Catal. 1997, 4, 91-98.
[33] D. Hadži, C. Klofutar, S. Oblak, J. Chem. Soc. A 1968, 905-908.
[34] J. H. Lunsford, P. N. Tutunjian, P. J. Chu, E. B. Yeh, D. J. Zalewski, J. Phys. Chem. 1989, 93, 2590-2595.
[35] E. F. Rakiewicz, A. W. Peters, R. F. Wormsbecher, K. J. Sutovich, K. T. Mueller, J. Phys. Chem B 1998, 102, 2890-2896.
[36] J. P. Osegovic, R. S. Drago, J. Phys. Chem. B 2000, 104, 147-154.
[37] A. Zheng, S. J. Huang, W. H. Chen, P. H. Wu, H. L. Zhang, H. K. Lee, L. C. de Menorval, F. Deng, S. B. Liu, J. Phys. Chem. A 2008, 112, 7349-7356.
[38] A. Zheng, H. Zhang, X. Lu, S. B. Liu, F. Deng, J. Phys. Chem. B 2008, 112, 4496-4505.
[39] Z. Yu, A. Zheng, Q. Wang, S. J. Huang, F. Deng, S. B. Liu, Chin. J. Magn. Reson. 2010, 27, 485-515 (in Chinese).
[40] A. Zhang, S. B. Liu, F. Deng, Solid State Nucl. Magn. Reson. 2013, 55-56, 12-27.
[41] A. Zheng, S. J. Huang, Q. Wang, H. Zhang, F. Deng, S. B. Liu, Chin. J. Catal. 2013, 34, 436-491.
[42] G. Carja, G. Delahay, C. Signorile, B. Coq, Chem. Commun. 2004, 1404-1405.
[43] R.E. Wolf, Research Chemist, USGS, Central Region, Crustal Imaging & Characterization Tram, 2005.
[44] 曾喬偉,碩士論文,沸石上吸附性質探討,國立清華大學化學研究所,1999。
[45] 陳陵援,儀器分析 第五版,三民書局,1988。
[46] A. Sultana, M. Sasaki, K. Suzuki, H. Hamada, Catal. Commun. 2013, 41, 21-25.
[47] H. S. Vall, R. J. Blint, L. Olsson, Appl. Catal. B: Environ. 2009, 92, 138-153.
[48] S. C. DeCaluwe, Ph.D. Thesis: Quantifying the role of ceria as a catalyst in solid oxide fuel cell anodes. University of Maryland, College Park, USA, 2009.
[49] A. Rittermeier et al. Phys. Chem. Chem. Phys. 2009, 11, 8358-8366.
[50] M. Rivallan, G. Ricchiardi, S. Bordiga, A Zecchina. J. Catal. 2009, 264, 104-116.