簡易檢索 / 詳目顯示

研究生: 林凱晨
LIN, Kai-Chen
論文名稱: ZSM-5沸石擔載鐵基雙金屬觸媒在一氧化氮選擇性催化還原活性:酸性及金屬負載量效應研究
Performance of ZSM-5 Supported Fe-Based Bimetallic Catalysts on Selective Catalytic Reduction of NO: Effects of Acidity and Metal Loading
指導教授: 劉尚斌
Liu, Shang-Bin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 115
中文關鍵詞: 選擇性催化還原ZSM-5沸石擔體去硝效應固態31P核磁共振光譜三甲基磷氧酸協同效應
英文關鍵詞: Selective catalytic reduction (SCR), ZSM-5 zeolite support, DeNOx process, Solid-state 31P NMR spectroscopy, Trimethylphosphine oxide, Acid synergy effect
論文種類: 學術論文
相關次數: 點閱:107下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮氧化物去除(DeNOx)技術的研發深受日益嚴重的空氣污染以及更嚴格的環保規範而更受重視。本研究針對一系列鐵基雙金屬負載Fe-Z-M2 (Z = ZSM-5沸石;矽/鋁比值= 25)觸媒在氨氣選擇性催化還原(NH3-SCR)反應之催化效能進行系統性的探討。吾人利用各種分析及光譜實驗技術,對各DeNOx觸媒樣品進行物化特性鑑定,特別是利用本實驗室所開發之31P-TMPO MAS NMR酸性鑑定技術,深入探討各觸媒的酸種類、強度、酸量分佈等特性與SCR反應效能的關聯性。此外,本論文亦著重在探討金屬負載量及反應溫度對SCR效能的影響。在固定觸媒第一金屬(Fe)及其負載量下,隨第二金屬負載量(M2 = Cu、Ce、Pr、Cr)的增加,更多的超強路易士(L)酸亦隨之產生,並引發B/L酸協同效應而助長SCR反應效能。最後,吾人亦針對各系列觸媒在SCR反應前後之酸性特性變化及其對SCR反應活性進行研究。研究結果顯示,鐵基雙金屬負載Fe-Z-M2觸媒在適當的反應溫度區間(200 ~ 450 oC)有極佳的NH3-SCR效能,其NO轉化率可高達90%,故具備實際工業應用潛力。

    Owing to the increasing severity in air pollution and stringent environment specifications, the R&D of nitrogen oxides removal (DeNOx) technology have drawn considerable attention. The present study aims at the syntheses of various iron-based Fe-Z-M2 (Z = ZSM-5 zeolite; Si/Al = 25) catalysts and their catalytic performances during selective catalytic reduction of ammonia (NH3-SCR).。The physicochemical properties of these DeNOx catalysts were characterized by a variety of different techniques. Their acid features (type, strength, and concentration and distribution) were probed by 31P-TMPO MAS NMR technique developed in this laboraty. In particular, the effects of primary and secondary metal loadings and reaction temperature on SCR activity were investigated. For a given priminary metal (Fe) loading, an increasing dosage of the secondary metal (M2 = Cu、Ce、Pr、Cr) tends to provoke formation of strong Lewis acid sites, which are favorable fot the Brønsted-Lewis acid synergy during the SCR reaction. Furthermore, correlations between the acid features of various catalysts with SCR activity were also investigated. It is found that, the Fe-based bimettalic Fe-Z-M2 catalysts exhibit superior NH3-SCR performance over the desirable temperature range of 200450 oC, leading to a NO conversion of 90%, rendering perspective and practical industrial applications for DeNOx.

    目 錄 V 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 選擇性催化還原 2 1.2.1 背景與回顧 2 1.2.2 NH3-SCR去硝技術 6 1.3 沸石與催化 9 1.3.1 沸石簡介 9 1.3.2 沸石觸媒的應用 11 1.3.3 以ZSM-5觸媒催化NH3-SCR反應 13 1.4 固體酸觸媒之酸性鑑定 16 1.4.1固體酸觸媒之鑑定技術回顧 18 1.4.2 固態31P-R3PO NMR在固體酸觸媒之酸性鑑定與應用 21 1.5 研究動機 25 1.5.1 鐵基雙金屬擔載去硝觸媒之NH3-SCR研究 25 1.5.2 研究策略 34 第二章 實驗方法與步驟 37 2.1 化學藥品 37 2.2 金屬負載沸石觸媒之製備 38 2.2.1 沸石前處理 39 2.2.2 觸媒製備 39 2.3 NH3-SCR反應系統架構 42 2.3.1 NH3-SCR實驗裝置 42 2.3.2 反應氣體計量 43 2.3.3 固定床反應器 43 2.3.4 氣體分析 44 2.4 核磁共振光譜學及應用 46 2.4.1 核磁共振光譜學簡介 46 2.4.2 魔角旋轉 49 2.4.3 去耦合 50 2.5利用31P-TMPO MAS NMR鑑定固體酸觸媒之酸性特性 51 2.5.1 探針分子吸附樣品準備程序 51 2.5.2 31P-TMPO MAS NMR實驗參數 53 2.6 其他物化特性鑑定實驗 55 2.6.1 感應耦合電漿質譜分析 55 2.6.2 氮氣等溫吸附/脫附測量 56 2.6.3 粉末X-光繞射 58 2.6.4 元素分析 60 第三章 實驗結果與討論 61 3.1 NH3-SCR反應標準差實驗 61 3.2 不同負載濃度雙金屬觸媒之NH3-SCR效能 62 3.2.1 摻雜不同第二金屬之鐵基Fe5.0-Z-M2觸媒效能 63 3.2.2 Fe5.0-Z-M2觸媒之酸性特性鑑定 65 3.3 Fex-Z-Pry觸媒之NH3-SCR效能 69 3.4 Fe5.0-Z-Cey觸媒之NH3-SCR效能 74 3.5 Fe5.0-Z-Cuy觸媒觸媒之NH3-SCR效能 85 3.6 雙金屬Fe-Z-M2觸媒在反應前後之酸性變化 91 第四章 結論與未來展望 95 附 錄 99 附錄圖 99 附錄表 105 參考文獻 111

    [1] J. D. Spengler, K. Sexton, Science 1983, 221, 9-17.
    [2] P. L. Naeher, M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, K. R. Smith, Inhal. Toxicol. 2007, 19, 67-106.
    [3] Report on the state of the environment in Poland 2008, Environmental. Monitoring Library, Chief Environmental Protection Inspectorate, 2010.
    [4] U. Deka, I. Lezcano-Gonzalez, B. M. Weckhuysen, A. M. Beale, ACS Catal. 2013, 3, 413-427.
    [5] V. I. PaÃrvulescua, P. Grange, B. Delmon, Catal. Today 1998, 46, 233-316.
    [6] ToxFAQsTM for Nitrogen Oxides, Agency for Toxic Substances and Disease Registry (ATSDR), 2002.
    [7] J. H. Seinfeld, Science 1989, 243, 745-752.
    [8] F. Kasuya, P. Glarborg, J. E. Johnsson, K. Dam-Johansen, Chem. Eng. Sci. 1995, 50, 1455-1466.
    [9] Available and emerging technologies for reducing greenhouse gas emissions from the nitric acid production industry, Sector Policies and Programs Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA), December 2010.
    [10] R. Atkinson, Atmospheric transformations of automotive emissions. in Air Pollution, the Automobile, and Public Health, A. Y. Watson, R. R. Bates, D. Kennedy (Eds), National Academy Press, Washington, D. C., 1988.
    [11] P. Forzatti, Appl. Catal. A: Gen. 2001, 222, 221-236.
    [12] S. H. Begum, Ph.D. Thesis: Characterization and performances of nanosized bi-metallic Fe-based zeolite catalysts during selective catalytic reduction (SCR) of NO by NH3, Department of Chemistry, Natinal Taiwan University, Taiwan, December 2013.
    [13] A. Ma, W. Grünert, Chem. Commun. 1999, 1, 71-72.
    [14] J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, J. Catal. 2005, 232, 318-334.
    [15] D. Wang, L. Zhang, K. Kamasamudram, W. S. Epling, ACS Catal. 2013, 3, 871-881.
    [16] C. H. Baerlocher, L. B. McCusker, D. H. Olson, in Atlas of Zeolite Framework Types, 7th Ed., 2007.
    [17] R. R. Mukti, Ph.D. Thesis: Sorption and transport of aromatic over MFI zeolites, Technische Universität München, June 2007.
    [18] D. W. Breck, in Zeolite molecular sieves, Wiley, New York, 1974.
    [19] 吳榮宗,工業觸媒概論,國興出版社,1989.
    [20] H. Y. Huang, R. Q. Long, R. T. Yang, Appl. Catal. A: Gen. 2002, 235, 241-251.
    [21] J. Eng, C. H. Bartholomew, J. Catal. 1997, 171, 27-44.
    [22] S. A. Stevenson, J. C. Vartuli, C. F. Brooks, J. Catal. 2000, 190, 228-239.
    [23] S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, J. Catal. 2009, 268, 297-306.
    [24] R. J. Gillespie, Acc. Chem. Res. 1968, 1, 202-209.
    [25] 楊瑞郎,碩士論文,實作評量工具編製之研究—以高三化學「酸鹼滴定」,高雄師範大學科學教育研究所,2002年6月。
    [26] K. Arata, Adv. Catal. 1990, 37, 165-211.
    [27] W. K. Hall, Acc. Chem. Res. 1975, 8, 257-263.
    [28] A. Zheng, S. J. Huang, S. B. Liu, F. Deng, Phys. Chem. Chem. Phys. 2011, 13, 14889-14901.
    [29] A. Zheng, F. Deng, S. B. Liu, Ann. Rep. NMR Spectrosc. 2014, 81, 47-108.
    [30] Q. Zhao, W. H. Chen, S. J. Huang, Y. C. Wu, H. K. Lee, S. B. Liu, J. Phys. Chem. B 2002, 106, 4462-4469.
    [31] W. P. Rothwell, W. Shen, J. H. Lunsford J. Am. Chem. Soc. 1984, 106, 2452-2453.
    [32] J. H. Lunsford, Top. Catal. 1997, 4, 91-98.
    [33] D. Hadži, C. Klofutar, S. Oblak, J. Chem. Soc. A 1968, 905-908.
    [34] J. H. Lunsford, P. N. Tutunjian, P. J. Chu, E. B. Yeh, D. J. Zalewski, J. Phys. Chem. 1989, 93, 2590-2595.
    [35] E. F. Rakiewicz, A. W. Peters, R. F. Wormsbecher, K. J. Sutovich, K. T. Mueller, J. Phys. Chem B 1998, 102, 2890-2896.
    [36] J. P. Osegovic, R. S. Drago, J. Phys. Chem. B 2000, 104, 147-154.
    [37] A. Zheng, S. J. Huang, W. H. Chen, P. H. Wu, H. L. Zhang, H. K. Lee, L. C. de Menorval, F. Deng, S. B. Liu, J. Phys. Chem. A 2008, 112, 7349-7356.
    [38] A. Zheng, H. Zhang, X. Lu, S. B. Liu, F. Deng, J. Phys. Chem. B 2008, 112, 4496-4505.
    [39] Z. Yu, A. Zheng, Q. Wang, S. J. Huang, F. Deng, S. B. Liu, Chin. J. Magn. Reson. 2010, 27, 485-515 (in Chinese).
    [40] A. Zhang, S. B. Liu, F. Deng, Solid State Nucl. Magn. Reson. 2013, 55-56, 12-27.
    [41] A. Zheng, S. J. Huang, Q. Wang, H. Zhang, F. Deng, S. B. Liu, Chin. J. Catal. 2013, 34, 436-491.
    [42] G. Carja, G. Delahay, C. Signorile, B. Coq, Chem. Commun. 2004, 1404-1405.
    [43] R.E. Wolf, Research Chemist, USGS, Central Region, Crustal Imaging & Characterization Tram, 2005.
    [44] 曾喬偉,碩士論文,沸石上吸附性質探討,國立清華大學化學研究所,1999。
    [45] 陳陵援,儀器分析 第五版,三民書局,1988。
    [46] A. Sultana, M. Sasaki, K. Suzuki, H. Hamada, Catal. Commun. 2013, 41, 21-25.
    [47] H. S. Vall, R. J. Blint, L. Olsson, Appl. Catal. B: Environ. 2009, 92, 138-153.
    [48] S. C. DeCaluwe, Ph.D. Thesis: Quantifying the role of ceria as a catalyst in solid oxide fuel cell anodes. University of Maryland, College Park, USA, 2009.
    [49] A. Rittermeier et al. Phys. Chem. Chem. Phys. 2009, 11, 8358-8366.
    [50] M. Rivallan, G. Ricchiardi, S. Bordiga, A Zecchina. J. Catal. 2009, 264, 104-116.

    下載圖示
    QR CODE