研究生: |
林怡青 Lin, Yi-Ching |
---|---|
論文名稱: |
2-氨基-3-甲基-3H-咪唑並[4,5-F]喹啉誘導HepG2細胞之差異蛋白質體學分析 Differential proteomic analysis of HepG2 cell induced by 2-Amino-3-methyl-3H-imidazo[4,5-F]quinoline |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 雜環胺類 、差異蛋白質體學 、2-氨基-3-甲基-3H-咪唑並[4,5-F]喹啉 |
英文關鍵詞: | heterocyclic amine, differential proteomics, 2-Amino-3-methyl-3H-imidazo[4,5-F]quinoline |
DOI URL: | http://doi.org/10.6345/NTNU201900711 |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
IQ (2-amino-3-methyl-3H-imidazo[4,5-F]quinoline),為一種常見於食品中的雜環胺類,並被國際癌症組織列為2A級致癌物。目前已有研究證實,IQ對於動物具有致癌性,特別是在肝臟部分尤其顯著,但關於雜環胺類導致癌症的途徑仍尚未研究完畢。本實驗使用iTRAQ (同重位素相對及絕對定量)方法針對以IQ刺激不同時間長度的HepG2 cell樣品進行分析,為了增加鑑定到的蛋白質數目,搭配了不同的三種分餾方法,包含等電聚焦分級分離、鹼性逆相層析法、強陽離子交換層析法,且比較其正交性與互補性。再經由質譜進行分析,結果為三種分餾方法共鑑定到3057個蛋白質及10712個不重複胜肽,並以鹼性逆相層析法所鑑定到的數目最多。且在其中挑選出了391個差異蛋白質,並以Gene Ontology進行分類比較;並在其中又選出較具趨勢性的蛋白質分為上下調進行KEGG pathway分析,主要與ribosome, proteasome, spliceosome, Parkinson’s disease 有較大的相關性,並挑選出其中蛋白質表現下調較明顯的幾個基因(Ribosome- RPS26、RPS4X、RPL37A、RPS24,Parkinson’s disease-SLC25A4、NDUFA8)以qPCR實驗驗證,其中以RPS26、RPL37A趨勢與蛋白質定量結果最為相同。
IQ (2-amino-3-methyl-3H-imidazo[4,5-F]quinoline), belonged to heterocyclic amine (HCA) family, is classified as a probable human carcinogen (class 2A) by the International Agency for Research on Cancer (IARC). Studies to date indicate that IQ is carcinogenic to animals, especially in liver. Still, the mechanism of HCA-induced cancer in protein level is not well-understood. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was applied for the investigation of the HepG2 protein profiles with different IQ-treat times. In order to obtain higher complementarity, orthogonality and more protein identifications, two-dimensional separation techniques were used as fractionation strategies for the iTRAQ labeled peptides, including solution isoelectric focusing (sIEF), basic reverse phase chromatography (bRP), and strong cationic exchange chromatography (SCX). Protein identification and quantitation was then accomplished by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. A total of 10712 unique peptides and 3057 proteins was successfully identified. Among these three fractionation strategies, bRP fractionation gave the most protein and unique peptide identifications. Moreover, 271 differentially expressed proteins were selected and found to be highly associated with ribosome, proteasome, spliceosome, Parkinson’s disease. Some of these differential genes (Ribosome- RPS26、RPS4X、RPL37A、RPS24,Parkinson’s disease-SLC25A4、NDUFA8) were confirmed and validated using qRT-PCR.
1. Doll, R. and R. Peto, The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. JNCI: Journal of the National Cancer Institute, 1981. 66(6): p. 1192-1308.
2. Commoner, B., et al., Formation of mutagens in beef and beef extract during cooking. Science, 1978. 201(4359): p. 913-916.
3. SUGIMURA, T., et al., Mutagenic principle (s) in tryptophan and phenylalanine pyrolysis products. Proceedings of the Japan Academy, 1977. 53(1): p. 58-61.
4. Bjeldanes, L., et al., Mutagens from the cooking of food. II. Survey by Ames/Salmonella test of mutagen formation in the major protein-rich foods of the American diet. Food and Chemical Toxicology, 1982. 20(4): p. 357-363.
5. Kasai, H., et al., A potent mutagen in broiled fish. Part 1. 2-Amino-3-methyl-3 H-imidazo [4, 5-f] quinoline. Journal of the Chemical Society, Perkin Transactions 1, 1981: p. 2290-2293.
6. KASAI, H., et al., Potent novel mutagens produced by broiling fish under normal conditions. Proceedings of the Japan Academy, Series B, 1980. 56(5): p. 278-283.
7. Kasai, H., et al., Structure of a potent mutagen isolated from fried beef. Chemistry Letters, 1981. 10(4): p. 485-488.
8. Felton, J., et al., The isolation and identification of a new mutagen from fried ground beef: 2-amino-l-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP). Carcinogenesis, 1986. 7(7): p. 1081-1086.
9. Jägerstad, M., et al., Creatinine and Maillard reaction products as precursors of mutagenic compounds formed in fried beef, in The Maillard reaction in foods and nutrition. 1983, ACS Publications. p. 507-519.
10. Eisenbrand, G. and W. Tang, Food-borne heterocyclic amines. Chemistry, formation, occurrence and biological activities. A literature review. Toxicology, 1993. 84(1-3): p. 1-82.
11. Sugimura, T., et al., Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Science, 2004. 95(4): p. 290-299.
12. Wogan, G.N., et al., Environmental and chemical carcinogenesis. Semin Cancer Biol, 2004. 14(6): p. 473-86.
13. Sugimura, T., Overview of carcinogenic heterocyclic amines. Mutat Res., 1997. 376: p. 211-219.
14. Hammons, G.J., et al., Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes. Carcinogenesis, 1997. 18(4): p. 851-854.
15. Anderson, K., et al., Metabolic activation of aromatic amines by human pancreas. Carcinogenesis, 1997. 18(5): p. 1085-1092.
16. McKinnon, R. and M. McManus. Function and localization of cytochromes P450 involved in the metabolic activation of food-derived heterocyclic amines. in Princess Takamatsu symposia. 1995.
17. McManus, M.E., et al., Metabolism of 2-acetylaminofluorene and benzo (a) pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450. Cancer Research, 1990. 50(11): p. 3367-3376.
18. Kaderlik, K.R., et al., Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-l-methyl-6-phenyUmidazo [4, 5-b] pyridine (PhIP) in rat extrahepatic tissues. Carcinogenesis, 1994. 15(8): p. 1703-1709.
19. Pfau, W., et al., Metabolic activation of the food mutagens 2-amino-3-methylimidazo [4, 5-f] quinoline (IQ) and 2-amino-3, 4-dimethylimidazo [4, 5-f] quinoline (MeIQ) to DNA binding species in human mammary epithelial cells. Carcinogenesis, 1992. 13(5): p. 907-909.
20. Xiao, S., et al., Biomonitoring DNA Adducts of Cooked Meat Carcinogens in Human Prostate by Nano Liquid Chromatography-High Resolution Tandem Mass Spectrometry: Identification of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine DNA Adduct. Anal Chem, 2016. 88(24): p. 12508-12515.
21. Turesky, R.J. and L. Le Marchand, Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol, 2011. 24(8): p. 1169-214.
22. Adamson, R.H., et al., Induction of hepatocellular carcinoma in nonhuman primates by the food mutagen 2-amino-3-methylimidazo [4, 5-f] quinoline. Environmental health perspectives, 1994. 102(2): p. 190-193.
23. Aeschbacher, H.-U. and R.J. Turesky, Mammalian cell mutagenicity and metabolism of heterocyclic aromatic amines. Mutation Research/Genetic Toxicology, 1991. 259(3-4): p. 235-250.
24. Beland, F. and F. Kadlubar, Metabolic activation and DNA adducts of aromatic amines and nitroaromatic hydrocarbons, in Chemical carcinogenesis and mutagenesis I. 1990, Springer. p. 267-325.
25. Hall, M., et al., Tissue distribution of DNA adducts in CDF1 mice fed 2-amino-3-methylimidazo [4, 5-f] quinoline (IQ) and 2-amino-3, 4-dimethylimidazo [4, 5-f quinoline (MeIQ). Carcinogenesis, 1990. 11(6): p. 1005-1011.
26. Alaejos, M.S., et al., Analytical methods applied to the determination of heterocyclic aromatic amines in foods. Journal of Chromatography B, 2008. 862(1-2): p. 15-42.
27. Murkovic, M., Formation of heterocyclic aromatic amines in model systems. Journal of Chromatography B, 2004. 802(1): p. 3-10.
28. Zheng, W. and S.-A. Lee, Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutrition and cancer, 2009. 61(4): p. 437-446.
29. Nowell, S., et al., Analysis of total meat intake and exposure to individual heterocyclic amines in a case-control study of colorectal cancer: contribution of metabolic variation to risk. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2002. 506: p. 175-185.
30. Li, D., et al., Dietary mutagen exposure and risk of pancreatic cancer. Cancer Epidemiology and Prevention Biomarkers, 2007. 16(4): p. 655-661.
31. Sinha, R., et al., 2-Amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine, a carcinogen in high-temperature-cooked meat, and breast cancer risk. Journal of the National Cancer Institute, 2000. 92(16): p. 1352-1354.
32. DeStefani, E., et al., Meat intake, heterocyclic amines and risk of colorectal cancer. International journal of oncology, 1997. 10(3): p. 573-580.
33. Tang, D., et al., Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiology and Prevention Biomarkers, 2007. 16(4): p. 803-808.
34. Ohgaki, H., et al., Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo [4, 5-f] quinoline, from broiled sardine, cooked beef and beef extract. Carcinogenesis, 1984. 5(7): p. 921-924.
35. Ohgaki, H., et al., Carcinogenicity in mice of a mutagenic compound, 2-amino-3, 8-dimethylimidazo [4, 5-f] quinoxaline (MeIQx) from cooked foods. Carcinogenesis, 1987. 8(5): p. 665-668.
36. Kato, T., et al., Carcinogenicity in rats of a mutagenic compound, 2-amino-3, 8-dimethylimidazo [4, 5-f] quinoxaline. Carcinogenesis, 1988. 9(1): p. 71-73.
37. Pezdirc, M., B. Žegura, and M. Filipič, Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food and chemical toxicology, 2013. 59: p. 386-394.
38. De Stefani, E., et al., Meat intake, heterocyclic amines, and risk of breast cancer: a case-control study in Uruguay. Cancer Epidemiology and Prevention Biomarkers, 1997. 6(8): p. 573-581.
39. Layton, D.W., et al., Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis, 1995. 16(1): p. 39-52.
40. Dirr, A., et al., The DNA-adducts of the food mutagen and carcinogen IQ (2-amino-3-methylimidazo [4, 5-f] quinoline), in Biological Monitoring of Exposure and the Response at the Subcellular Level to Toxic Substances. 1989, Springer. p. 224-226.
41. Wolz, E., W. Pfau, and G. Degen, Bioactivation of the food mutagen 2-amino-3-methyl-imidazo [4, 5-f] quinoline (IQ) by prostaglandin-H synthase and by monooxygenases: DNA adduct analysis. Food and chemical toxicology, 2000. 38(6): p. 513-522.
42. Schut, H.A. and E.G. Snyderwine, DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis, 1999. 20(3): p. 353-368.
43. Alaejos, M.S., V. Pino, and A.M. Afonso, Metabolism and toxicology of heterocyclic aromatic amines when consumed in diet: influence of the genetic susceptibility to develop human cancer. A review. Food Research International, 2008. 41(4): p. 327-340.
44. Boobis, A.R., et al., CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer research, 1994. 54(1): p. 89-94.
45. Knasmüller, S., et al., Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology, 2004. 198(1-3): p. 315-328.
46. Bressac, B., et al., Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proceedings of the National Academy of Sciences, 1990. 87(5): p. 1973-1977.
47. Van Delft, J., et al., Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis, 2004. 25(7): p. 1265-1276.
48. Sim, E.U.-H., A.K.-L. Toh, and T.-S. Tiong, Preliminary findings of down-regulated genes in nasopharyngeal carcinoma. Asia Pacific Journal of Molecular Biology and Biotechnology, 2008. 16(3): p. 79-84.
49. Cui, D., et al., The ribosomal protein S26 regulates p53 activity in response to DNA damage. Oncogene, 2014. 33(17): p. 2225.
50. Jung, Y., et al., Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clinical Cancer Research, 2011. 17(4): p. 700-709.
51. MacDonald, T.J., et al., Progression-associated genes in astrocytoma identified by novel microarray gene expression data reanalysis, in Microarray Data Analysis. 2007, Springer. p. 203-221.
52. Sim, E.U.H., et al., Differential expression of a subset of ribosomal protein genes in cell lines derived from human nasopharyngeal epithelium. Journal of human genetics, 2010. 55(2): p. 118.
53. Liu, Y., et al., Identification of differential expression of genes in hepatocellular carcinoma by suppression subtractive hybridization combined cDNA microarray. Oncology reports, 2007. 18(4): p. 943-951.
54. Nilsson, R., et al., Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nature communications, 2014. 5: p. 3128.
55. Sotgia, F., M. Fiorillo, and M.P. Lisanti, Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget, 2017. 8(40): p. 68730.
56. Penzo, M., et al., The Ribosome Biogenesis—Cancer Connection. Cells, 2019. 8(1): p. 55.
57. Vaklavas, C., S.W. Blume, and W.E. Grizzle, Translational dysregulation in cancer: molecular insights and potential clinical applications in biomarker development. Frontiers in oncology, 2017. 7: p. 158.
58. Sulima, S.O., et al., How ribosomes translate cancer. Cancer discovery, 2017. 7(10): p. 1069-1087.