簡易檢索 / 詳目顯示

研究生: 涂嘉良
Jia-Liang Tu
論文名稱: 可撓式全固態鋰離子二次電池之製作及特性分析
Fabrication and Characteristics of Bendable All Solid-state Lithium-ion Secondary Batteries
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 鋰離子二次電池可饒式鋰鈷氧化物氮化磷酸鋰濺鍍雲母
英文關鍵詞: Lithium-ion secondary battery, Bendable, LiCoO2, LiPON, Sputter, Mica
論文種類: 學術論文
相關次數: 點閱:704下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可攜式電子產品於我們日常生活中漸漸扮演不可或缺之角色。現今隨著穿戴式裝置之使用量不斷劇增,可穩定提供電源之儲能材料被視為發展之重點,其中傳統鋰離子二次電池仍具有漏液及封裝上之限制,為了克服上述安全問題,且全固態鋰離子二次電池具備高能量密度及可撓式產品之應用等優點,因而深具取代傳統鋰離子二次電池之潛力。
    本研究主要為製作與分析全固態鋰離子二次薄膜電池,其中以可撓式雲母片(Mica)作為基板,以射頻磁控濺鍍技術製備鋰鈷氧化物(lithium cobalt oxide; LiCoO2)為陰極材料,與鋰磷氧氮化物(lithium phosphorous oxynitride; LiPON)為固態電解質,依序沉積於以白金為電流收集器之雲母基板表面,進而再以熱蒸鍍技術沉積鋰金屬作為陽極薄膜即可完成電池組裝。
    本研究乃探討不同熱退火溫度對於LiCoO2薄膜材料之影響與不同濺鍍環境之壓力對於LiPON薄膜材料之影響,並建立其最佳電化學表現。其中以粉末x光繞射儀(x-ray diffraction; XRD)鑑定樣品之晶相及其結晶度;以掃描式電子顯微鏡(scanning electron microscope; SEM)觀測樣品表面形貌與;並以x光電子能譜(x-ray photoelectron spectroscopy; XPS)分別量測樣品之電化學組成;此外利用交流阻抗測試計算電解質之離子導電度,並配合充放電儀研究材料之電容量與電化學循環表現。經上述鑑定發現經520℃後退火之LiCoO2薄膜為(101)晶面優選方向,充放電過程其鋰離子於晶格中擴散不受氧離子層阻擋之優勢,此外於5 mtorr條件下製備之LiPON薄膜具高含量之三重鍵結氮,且表面形貌及製程穩定性較高,其電解質薄膜之離子導電度可高達1.6×10-6 S/cm。以最佳濺鍍製程參數依序沉積於以白金為電流收集器之雲母基板表面,最後以熱蒸鍍技術沉積鋰金屬作為陽極薄膜即可完成全電池組裝,並實際使全電池以藍光LED作測試,並確實可以點亮藍光LED。

    Portable electronic products play important roles in our daily life. With the amount of wearable devices is nowadays rapidly growing, a stable supply of energy storage material is regarded as the focus of development. Therefore, developing stable energy-storage materials is a significant task. Because of high energy density and long cycle life in all-solid-state thin film batteries, they can serve as the major candidates to replace the conventional lithium ion batteries.
    The purposes of this research are to fabricate and analyze all-solid-state lithium ion thin film batteries. First, we use bendable material Mica to be substrate, and deposited lithium cobalt oxide (LiCoO2) as cathode material and lithium phosphorus oxynitride (LiPON) to be solid electrolyte on substrate with Pt current collector by RF magnetic sputtering technique. And then we prepared lithium metal as anode material by thermal evaporation to complete the fabrication of the batteries.
    The various annealing conditions were revealed to discuss the effects on the LiCoO2 thin film materials, and various sputtering pressures were revealed to discuss the effects on the LiPON thin film materials, and set up the best electrochemical performance of them. The crystal structure and crystallization were characterized by x-ray diffraction (XRD). The morphology and deposition rate were analyzed by scanning electron microscope (SEM). x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS) were used to observe the oxidation states and the coordination conditions. The ion conductivity of solid electrolyte was calculated by performing the electrochemical impedance spectroscopy (EIS), and the capacity and the cycle life of electrodes were measured by the capacity tester. Under these characterizations could discover that the LiCoO2 thin film was (101) preferred orientation after post-annealing. As a result, it could avoid the diffusion of lithium ions from the oxygen layer blocking. In addition, there was more triply coordinated nitrogen in the LiPON thin film under 5 mtorr fabricating factors. The ionic conductivity could reach 1.6×10-6 S/cm.
    Finally, deposited lithium metal as the anode thin film deposition by thermal evaporation technique to complete the whole battery pack. And use blue LED for testing, and indeed can lightening the blue LED.

    致謝 I 摘要 III Abstract V 總目錄 VII 圖目錄 X 表目錄 XIV 第1章 緒論 1 1.1 鋰離子二次電池之發展歷史與充放電機制 2 1.2 全固態薄膜電池之發展歷史 6 1.3 陰極材料 14 1.3.1 鋰鈷氧化物(LiCoO2) 15 1.3.2 磷酸鋰鐵(LiFePO4) 17 1.3.3 鋰錳氧化物(LiMn2O4) 19 1.3.4 鋰鎳氧化物(LiNiO2) 21 1.3.5 鋰鈷氧化物(LiCoO2)陰極薄膜 22 1.4 電解質材料 24 1.4.1 液態電解質 25 1.4.2 高分子電解質 26 1.4.3 無機固態電解質 27 1.4.4 固態電解質介面(solid electrolyte interface; SEI) 28 1.4.5 鋰磷氧氮化物(LiPON)固態電解質薄膜 29 1.5 本研究動機與新穎性 30 第2章 實驗步驟與儀器分析原理 31 2.1 全固態薄膜電池之材料製備 31 1.1.1 基材(substrate) 31 1.1.2 濺鍍製程 34 1.1.3 快速升溫退火爐(Rapid Thermal Annealing ) 39 1.1.4 LiCoO2陰極薄膜之製備 40 1.1.5 LiPON固態電解質薄膜之製備 42 1.1.6 熱蒸鍍機台(Thermal evaporator) 43 1.1.7 鋰金屬陽極薄膜之製備 44 2.2 全固態薄膜電池之材料鑑定 45 2.2.1 鈕扣電池(coin cell)之組裝 45 2.2.2 充放電測試儀 46 2.2.3 掃描式電子顯微鏡(scanning electron microscope; SEM ) 47 2.2.4 x光繞射儀(x-ray diffraction; XRD) 47 2.2.5 x射線光電子能譜儀(x-ray photoelectron spectroscopy; XPS ) 49 2.2.6交流阻抗(EIS) 51 2.3 全固態薄膜電池之全電池組裝 53 第3章 結果與討論 58 3.1 LiCoO2陰極薄膜 58 3.1.1不同退火溫度對於LiCoO2薄膜之影響 58 3.2 LiPON固態電解質薄膜 68 3.2.1不同沉積壓力對於LiPON薄膜之影響 68 3.4 全固態薄膜電池之測試 80 第四章 結論 81 參考文獻 82

    [1] Berend N., (2050.Jan 01) Thin-film batteries empower embedded apps(1) [Online] http://www.epochtimes.com/b5/9/10/2/n2675238.htm
    [2] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, and S.-J. Yoon, "Issue and challenges facing rechargeable thin film lithium batteries," Materials Research Bulletin, vol. 43, pp. 1913-1942.
    [3] J. M. Tarascon and D. Guyomard, "LI METAL-FREE RECHARGEABLE BATTERIES BASED ON LI1+XMN2O4 CATHODES (O LESS-THAN-OR-EQUAL-TO X LESS-THAN-OR-EQUAL-TO 1) AND CARBON ANODES," Journal of the Electrochemical Society, vol. 138, pp. 2864-2868, Oct 1991.
    [4] K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, "Thin film solid electrolyte and its application to secondary lithium cell," Solid State Ionics, vol. 9–10, Part 2, pp. 1445-1448, 1983.
    [5] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, "Fabrication and Characterization of Amorphous Lithium Electrolyte Thin-Films and Rechargeable Thin-Film Batteries," Journal of Power Sources, vol. 43, pp. 103-110, Mar 15 1993.
    [6] R. Goldner, T. Y. Liu, S. Slaven, A. Gerouki, P. Zerigian, T. E. Hass, F. O. Arntz,and S. Jones, "Development of a thin film Li1-yCoO2/LixC6rocking-chair battery",Thin Film Solid Ionic Devices and Material, 95-22 , 173, 1996.
    [7] B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, and J. D. Robertson, "Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes," Journal of the Electrochemical Society, vol. 143, pp. 3203-3213, Oct 1996.
    [8] R. P. Raffaelle, J. D. Harris, D. Hehemann, D. Scheiman, G. Rybicki, and A. F. Hepp, "A facile route to thin-film solid state lithium microelectronic batteries," Journal of Power Sources, vol. 89, pp. 52-55, Jul 2000.
    [9] S. W. Song, S. J. Hong, H. Y. Park, Y. C. Lim, and K. C. Lee, "Cycling-Driven Structural Changes in a Thin-Film Lithium Battery on Flexible Substrate," Electrochemical and Solid State Letters, vol. 12, pp. A159-A162, 2009.
    [10] M. Koo, K. I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, and K. J. Lee, "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems," Nano Letters, vol. 12, pp. 4810-4816, Sep 2012.
    [11] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, pp. 783-789, 1980.
    [12] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density," Solid State Ionics, vol. 3–4, pp. 171-174, 1981.
    [13] B. Garcia, J. Farcy, J. P. Pereira-Ramos, J. Perichon, and N. Baffier, "Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries," Journal of Power Sources, vol. 54, pp. 373-377, 1995.
    [14] A. Manthiram and J. Kim, "Low temperature synthesis of insertion oxides for lithium batteries," Chemistry of Materials, vol. 10, pp. 2895-2909, Oct 1998.
    [15] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates," Journal of the Electrochemical Society, vol. 144, pp. 1609-1613, May 1997.
    [16] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, Nov 15 2001.
    [17] D. G. Wickham and W. J. Croft, "Crystallographic and Magnetic Properties of Several Spinels Containing Trivalent Ja-1044 Manganese," Journal of Physics and Chemistry of Solids, vol. 7, pp. 351-360, 1958.
    [18] M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, "Lithium Insertion into Manganese Spinels," Materials Research Bulletin, vol. 18, pp. 461-472, 1983.
    [19] M. Wakihara, "Recent developments in lithium ion batteries," Materials Science & Engineering R-Reports, vol. 33, pp. 109-134, Jun 1 2001.
    [20] L. D. Dyer, B. S. Borie, and G. P. Smith, "Alkali Metal-Nickel Oxides of the Type MNiO2," Journal of the American Chemical Society, vol. 76, pp. 1499-1503, 1954/03/01 1954.
    [21] M. S. Whittingham, "Lithium batteries and cathode materials," Chemical Reviews, vol. 104, pp. 4271-4301, Oct 2004.
    [22] J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, and S. A. Hackney, "Preferred orientation of polycrystalline LiCoO2 films," Journal of the Electrochemical Society, vol. 147, pp. 59-70, Jan 2000.
    [23] Z.-M. Xue, J.-F. Zhao, J. Ding, and C.-H. Chen, "LBDOB, a new lithium salt with benzenediolato and oxalato complexes of boron for lithium battery electrolytes," Journal of Power Sources, vol. 195, pp. 853-856, 2010.
    [24] P. V. Wright, "Electrical conductivity in ionic complexes of poly(ethylene oxide)," British Polymer Journal, vol. 7, pp. 319-327, 1975.
    [25] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, "A lithium superionic conductor," Nat Mater, vol. 10, pp. 682-6, Sep 2011.
    [26] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, pp. 587-603, Feb 9 2010.
    [27] 杜正恭,儀器總覽;行政院國家科學委員會精密儀器發展中心,民87。
    [28] W.-S. Kim, "Characteristics of LiCoO2 thin film cathodes according to the annealing ambient for the post-annealing process," Journal of Power Sources, vol. 134, pp. 103-109, 2004.
    [29] X. F. Li, J. Liu, M. N. Banis, A. Lushington, R. Y. Li, M. Cai, and X. L. Sun, "Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application," Energy & Environmental Science, vol. 7, pp. 768-778, Feb 2014.
    [30] N.-S. Roh, S.-D. Lee, and H.-S. Kwon, "Effects of deposition condition on the ionic conductivity and structure of amorphous lithium phosphorus oxynitrate thin film," Scripta Materialia, vol. 42, pp. 43-49, 1999.
    [31] Z. Q. Hu, D. Z. Li, and K. Xie, "Influence of radio frequency power on structure and ionic conductivity of LiPON thin films," Bulletin of Materials Science, vol. 31, pp. 681-686, Aug 2008.
    [32] C. S. Nimisha, K. Y. Rao, G. Venkatesh, G. M. Rao, and N. Munichandraiah, "Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications," Thin Solid Films, vol. 519, pp. 3401-3406, 2011.
    [33] Y. Hamon, A. Douard, F. Sabary, C. Marcel, P. Vinatier, B. Pecquenard, and A. Levasseur, "Influence of sputtering conditions on ionic conductivity of LiPON thin films," Solid State Ionics, vol. 177, pp. 257-261, 2006.
    [34] Z. Hu, K. Xie, D. Wei, and N. Ullah, "Influence of sputtering pressure on the structure and ionic conductivity of thin film amorphous electrolyte," Journal of Materials Science, vol. 46, pp. 7588-7593, 2011.

    下載圖示
    QR CODE